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Levels for T, etc. (dotted lines) and E-flux, etc. (solid lines’)
in 10 CMIP5 Models
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*pr = 0 at top-most level, it’s not shown and color-filling starts at the next level down.
“bee-csm1-1 has exactly the same levels as CAMA4.
“WACCM4 adds levels above CAMA4’s, reaching z = 135 km.
“**CAMS adds to CAM4 lower levels, accommodating UW PBL / shallow convection.



Why tides care about model tops
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ABSTRACT

Free and forced oscillations are compared for infinite and bounded atmospheres. Both continuous and two
. layer bounded atmospheres arc considered. It is found that bounded atmospheres reproduce the free oscillations
of the infinite atmosphere with accuracy that depends on top height—they, however, also introduce spurious free

oscillations. In studying forced oscillations, the spurious oscillations of bounded atmospheres appear as spurious
atmospheres do not properly respond to oscillations that propagate vertically.

resonances.

1. INTRODUCTION

It is common practice to use simplified calculations in
order to elucidate the nature of various more compli-
cated atmospheric problems. As pointed out by Lindzen
[3], a variety of such problems is included in the con-
sideration of linearized perturbations on a static basic
state (or one with o “constant” zonal flow). Such a study
gives o remarkably good description of Rossby-Haurwitz
waves, atmospheric tides, and other features. It is clear
that various multilevel numerical models do not corre-
spond precisely to the real atmosphere—especially as
concerns vertical resolution and the upper boundary. If
the above’mentioned simplified calculations had been
carried out for prototypes of the model atmospheres
rather than of the real atmosphere, what would have
resulted? In this paper we will consider the behavior of
free and thermally forced linear perturbations on a static
lsothermal atmosphere for three different models:

1. An infinite atmosphere where disturbances are re-
quired to remain bounded as z (i.e., altitude) — . If
tlfle disturbances propagate vertically, a radiation con-
dllgnn is imposed at great altitudes.
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1, they also produce spurious Rossby waves. Also, models
2 and 3 can badly misrepresent thermal tides. Model 2
has been included primarily because it is toward this
model that multilevel models converge as the number
of levels is increased.

2. EQUATIONS

We consider the problem of linearized oscillations in a
rotating, isothermal, spherical gaseous envelope. For pur-
poses of considering forced responses we will include a
thermal excitation of the form

J=J(b,p,t)e"*, (1)

where #=colatitude, ¢=Ilongitude, t=time, z=z/H, H
=RT,/g, R=gas constant, g=acceleration of gravity,
Ty=bhasic temperature, and J=heating per unit time
per unit mass. The particular vertical structure chosen
for J is of no particular significance. It happens to be the
structure for excitation by insolation absorption by water
vapor (Siebert [5]). The oscillations that exist when J=0
are free oscillations; Rossby-Haurwitz waves are of this

type.
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ABSTRACT

Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations
in air pressure, their simulations in current coupled global climate models have not been fully examined. This
work examines near-surface-pressure tides in climate models that contributed to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC); it compares them with tides both from
observations and from the Whole Atmosphere Community Climate Model (WACCM), which extends from
the earth’s surface to the thermosphere. Surprising consistency is found among observations and all model
simulations, despite variation of the altitudes of model upper boundaries from 32 to 76 km in the IPCC
models and at 135 km for WACCM. These results are consistent with previous suggestions that placing
amodel’s upper boundary at low altitude leads to partly compensating errors—such as reducing the forcing of
the tides by ozone heating, but also introducing spurious waves at the upper boundary, which propagate to the
surface.

* Actually sea-level pressure in CMIP3 high-time-frequency output; changed to
surface pressure in CMIP5 high-time-frequency output.



Preliminary results from CMIP5: Diurnal tide am
Color scale runs from 0 (blue) to 3 (red) hPa
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Preliminary results from CMIP5: Semidiurnal tide amplitude
Color scale runs from 0 (blue) to 2 (red-brown) hPa
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Preliminary conclusion: CMIP5 output supports the “compensating errors”
theory implied by CMIP3 and earlier GCM output.

Future directions: Beyond the surface-pressure signature:

e Connections with other near-surface fields
— Available in CMIP5 3-hourly output: p, T, u, v, g, E-fluxes, precipitation, runoff and soil
moisture near surface; total cloudiness (3hr data)
* Free atmosphere fields
— Available in CMIP5 6-hourly output: 7, u, v, g on all model levels (6hrLev data)
— Good enough for diurnal but not semidiurnal harmonic

e (lassical (linear) modeling with GCM vertical discretization
— A diagnostic tool for understanding GCM simulation of tides
— Extracting the forcing for each CMIP5 model will be difficult:

* H,O forcing from 6hrLev g on model levels
* O, forcing from CMIP5 monthly mean output (includes O interpolated to 1000, 925, 850, 700, 600, 500, 400,
300, 250, 200, 150, 100, 70, 50, 30, 20, 10 hPa, and “when appropriate,” 7, 5, 3, 2, 1, 0.4 hPa -- Amon data)

e Latent heat release NOT archived at high time frequency. 3hr precip can be a surrogate; how to distribute
vertically?

— ... butisit necessary? Simple schematic choices can illustrate how such matters as lids
and daily variations in rainfall can affect things.

* Related wave types
— Planetary scale waves
— Gravity waves
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