Polar Climate Working Group Update

Elizabeth Hunke, LANL (co-chair) Jennifer E. Kay, NCAR (co-chair) Dave Bailey, NCAR (liaison)

http://www.cesm.ucar.edu/working_groups/Polar/

PCWG 2-year Priorities (March 2012):

- 1. Polar climate research
- 2. Observational needs/uses
- 3. High resolution runs
- 4. Modeling issues/strategies
- 5. Merge CICE/CESM, CICE development

Polar Research: Sea Ice Trends

Polar Research: Antarctic Sea Ice Trends

"The effect of ozone depletion is to warm the surface and the ocean to a depth of 1000 m and to significantly reduce sea ice extent.... The total loss of sea ice area is roughly the same in the fine and coarse resolution cases"

Bitz and Polvani 2012

Polar Research: Sea Ice Predictability

Holland et al. submitted

Polar Research: Cloud Feedbacks

Gettelman et al. 2012

Kay, Medeiros (in progress)

Arctic Research: AMOC and Sea ice Loss

Community Earth System Model

Jahn and Holland 2013

CESM-CAM5 Large Ensemble

coordinated by Clara Deser and Jen Kay

1850 control run (1000 years)

Large ensemble (30+) from 1900-2080 using historical/RCP8.5 forcing. Ensemble spread from round-off error in CAM initial condition.

Using released version of CESM-CAM5 1 degree FV with Yellowstone support (CESM1_1_1)

Community process to establish output variables: monthly throughout, daily throughout, timeslice 6-hourly

PCWG observational needs/uses

"living" document to increase transparency and facilitate communication with observational community, updated annually.

Input very welcome.

Document available through the PCWG website.

http://www.cesm.ucar.edu/working_groups/Polar/ PCWG_workingdoc_obs4models_July22012.docx.pdf

High resolution runs

Modeling issues/strategies

ne120_f02_t12_B1850a (FM) 0006-0010

t341f02.B1850dEdd (FM) 0007-0011

T341 CAM4 physics

Both initialized from 0.1° POP/ CICE

various atmo models/versions/resolutions ocean & ice 1/10°, 1/12° inertial oscillations apparent instabilities in some configs

CICE Infrastructure & efficiency improvements

e.g., from CESM:

Tony Craig's grid decompositions, ice halos

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- OpenMP threads
- Parallel I/O (PIO/pnetcdf)
- miscellaneous parameters, etc.

Multiphase Physics

2 Approaches

courtesy B. Light, JGR 2003

- Mushy Layer thermodynamics from the ground up
- Bitz & Lipscomb 1999 thermodynamics
 + coupled vertical salinity transport model

Melt Ponds in CICE

- implicit: old shortwave parameterization reduces albedo
- explicit, empirical: CCSM4/CESM1 pond scheme "cesm"
- Oliversity College London's approach
- Ission of 3 and 4

"topo"

"lvl"

Biogeochemistry

Chlorophyll, DMS produced by CICE algae: Pigments in ice, trace gas below and in margins

Elliott et al., "Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology," J. Geophys. Res., 2012.

(日)

э

Anisotropic Rheology

The degree of local anisotropy is estimated by the structure tensor **A** $\psi(h, \tau; \mathbf{x}, t)$ x_{0} $\mathbf{A} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{A} = \langle \tau \otimes \tau \rangle = \int \psi \tau_{1} \tau_{2} dh d\tau$

Stress depends on lead orientation, A

$$\sigma \!=\! \sigma(h, \dot{\varepsilon}, A)$$

rotation

Lead orientation, A, evolves

$$\frac{DA}{Dt} = F_{therm}(A) + F_{frac}(A,\sigma)$$

M. Tsamados et al. CPOM U. Reading, UK

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Icebergs in CICE

 Δ deformed ice *h* Δ level ice *h* Δ = with bergs - without bergs

- Evaluating: Thermodynamics Size distribution CESM coupling
- Future: Berg mass flux from CISM

E. Hunke and D. Comeau, Sea ice and iceberg dynamic interaction. J. Geophys. Res. 116, 2011.