Inclusion of an aqueous phase
formation mechanism for organic
aerosols in CAM



Formation of organic aerosol depends on oxidation
state of intermediate products

Average Carbon Oxidation State

+1 8

= QOrganic aerosol is an intermediate in the oxidation
of most organics to CO, (“missing source” of SOA)
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Formation of organic aerosol depends on oxidation
state of intermediate products
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The U. Michigan model attempts to follow the
full oxidation chemistry using 250 chemical
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We use a standard We identify those

VOC oxidation scheme ‘VOC\ compounds that
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Specific compounds that partition to aerosol
phase have at least one of the following:

Partially soluble
Aromatic acid

Aromatic with 2 functional groups that are not
aldehydes

Have 12 or more carbon atoms

Have at least 10 carbon atoms and 2 functional
groups

Have at least 6 carbon atoms and 2 functional groups
1 of which is an acid

Be tri-functional



In addition, our SOA formation

mechanism includes:

Reaction of oxidation products within aerosol to form
non-evaporative compounds with 1-day e-fold:
“oligimerization”

Reaction of methyglyoxal and glyoxal on clouds and
sulfate aerosols to form non-evaporative species (Fu et
al., 2008)

Reaction of epoxides from isoprene to form non-
evaporative species on sulfate aerosols (i.e. Paulet et al,,
2009; Minerath et al., EST, 2009)

Formation of MSA from oxidation of DMS
POA: sources from biomass burning, fossil fuel, ocean



Simulation cases

Name of SOA | description
component

Simulation A Traditional isoprene mechanism + epoxide
formation

Simulation B Simulation A + HOx recycling (Peeters et al., 2009)

Simulation C  the same as Simulation B, but with a reduced rate
of HOx recycling by a factor of 10



Results: global budget (Simulation C)

Burden Total Anthropogenic | Biogenic Lifetime
production production production

1.54 Tg 119.3 Tg/yr 13.7 Tg/yr 105.6 Tg/yr 4.7 days

Five SOA components
w sv_oSOA

W lv_oSOA

glyoxal SOA
w methylglyoxal SOA
.. epoxide SOA

sv_0SOA and Iv_oSOA are formed from gas-particle
partitioning;

Glyoxal SOA, methylglyoxal SOA are from uptake of
gas glyoxal and methylgloxal by clouds and sulfate;
Epoxide SOA is from uptake of gas epoxide by sulfate.




Comparison with top-down estimates

Global SOA source Tg (SOA) a1
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Comparison with IMPROVE network
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Comparison of model results in
Amazon during wet season:

Run A: no HOx | Observation | Total
recycling

AMMA

AMAZE/Gulard
oni

Borneo

Run B: fast ne_MGLY+ Isoprene
HOXx recycling ne_oSOA | ne_GLY

AMMA 1.18 4.1 0.57 0.51 2.53 0.51 62 84
AMAZE/Gulard
oni 0.7-1.7 3.45 /0.36 0.25 2.44 0.40 0 1.0

Borneo 04416 0.25 0.06 0.72 0.13



SOA formation by SOA formation by chemical reaction
condensation of gas species in the agueous phase
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Simulation descriptions (3 simulations)

Simulation based on Fu et al. (2008) (the same as
Simulation Cin Lin et al. 2012)

surface process (Fu et al. 2008,2009)
dC |
4.y d-<v>-C,
a 4
A: sulfate aerosol surface area.
No detailed chemistry, just a parameterization

The same uptake parameter y for the reaction on cloud
droplets and aqueous aerosol

Gas phase glyoxal =» glyoxal SOA
Gas phase methylglyoxal =» methyglyoxal SOA




Simulation based on Ervens et al. (2011)

Multiphase reactions with detailed reactions in cloud
water but empirical reaction parameters in aerosol water
(Ervens and Volkamer 2010, Ervens et al., 2011)

dC k,

aq

dt “ " RT fa™ HRT

Different reactions occur in cloud droplets and in aerosol
water

SOA in cloud droplets: organic acids, including glyoxylic
acid, oxalic acid, and pyruvic acid.

SOA in aerosol water: oligomers



Simulation based on Lim et al. (2010)

Also multiphase reactions, but using detailed
reactions in both cloud water and aerosol
water (Lim et al., 2010).
dC k,
dt “ RT g HRT

SOA formed in cloud droplets: organic acids

SOA formed in aerosol water: oligomers



Availability of water in clouds/aerosols

Cloud water at 971 hPa g/m
Q{}N|"|II||||||I||I..I....,,,,,III

60N

30N

30S

605

90S

180 150W120W90W 60W 30v -~ ~—~—~— -7 ~oTmrmmTmr oo oo n 3
Aerosol water at 971 hPa g/m
90N 11 11 11 11

60N

30N

0

308

60S

908
180150W120W90W 60W 30W O 30E 60E 90E 120E150E 180



Compare 3 different treatments for SOA formed in
aqueous reactions

B SOA formed in cloud water versus B SOA formed in aerosol water

Simulation Fu Simulation Ervens Simulation Lim

Fu et al., JGR 2008 Ervens et al., ACP 2011 Lim et al., ACP 2010




Agueous SOA formation

Product’'n | Destruct’n | Net Deposit’n
(Tg/yr) | (Tg/yr) Product’n | (Tg/yr)
(Tg/yr)
Fu glyoxal 0.20 22.6 0.0 22.6 22.6
SOA
M-glyoxal 0.30 36.9 0.0 36.9 36.9
SOA
Ervens Oxalic acid 0.025 6.2 1.7 4.5 4.5
glyoxal 0.054 6.2 0.0 6.2 6.2
Oligomers
M-glyoxal 0.050 6.0 0.0 6.0 6.0
Oligomers
Lim Oxalic acid 0.023 5.1 1.3 3.8 3.8

Oligomers 1.8e-4 1.3e-2 1.6e-3 1.1e-2 1.1e-2
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Comparison with measurements

Observation
(ug C/m3)
Significant

AMMA improvement

AMAZE/Gulard in tropical _

oni 0.7-1.7 445 156  1.18 concentrations

Borneo 0.74 1.57 0.76 0.59
Case IMPROVE network AMS rural

(N=49) measurements (N=17)
NMB R NMB R Northern mid-latitude

Fu 1.7% 0.41 20.0% 0.3 predicted

concentrations
are not degraded by

Ervens -11.0% 0.41 -21.0% 0.2
Lim -34.1% 0.12 -50.0% 0.3 too much



Conclusion

These studies require a chemistry model that has enough
information represented to be able to add the specific molecular
scale processes being studied

The global SOA production in aqueous phase varies significantly
among these three different simulations, but overall, the model with
the higher chemical representation (Ervens scheme) is better than
the other two

The multiphase reaction scheme (Ervens) improves the modeled OA
In the tropical regions, but downgrades it somewhat in the Northern
Hemisphere.

Work is beginning to add this scheme to CAM5
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