Whole Atmosphere Community Climate Model (WACCM) and Its Thermosphere/Ionosphere Extension (WACCM-X)

WAWG Co-Chairs: Han-Li Liu, NCAR/HAO Lorenzo Polvani, Columbia University

Scientific Objectives of WACCM

- Solar impacts on the Earth System.
- Understand and quantify couplings between atmospheric layers through chemical, physical and dynamical processes.
- Implications of the couplings to climate (downward coupling) and to near space environment (upward coupling).

CESM Atmosphere Components

Major WACCM/WACCM-X Components

Model Framework	Chemistry	Physics	Physics	Resolution
Extension of the NCAR Community Atmosphere Model (CAM)Finite Volume Dynamical Core	MOZART+ lon Chemistry (~60 species) Fully-interactive with dynamics.	Long wave/short wave/EUV RRTMG IR cooling (LTE/non- LTE) Modal Aerosal CARMA Parameterized GW Major/minor species diffusion (+UBC) Molecular viscosity and thermal conductivity (+UBC) Species dependent Cp, R, m.	Parameterized electric field at high, mid, low latitudes. IGRF geomagnetic field. Auroral processes, ion drag and Joule heating lon/electron energy equations Ambipolar diffusion lon/electron transport due to Lorentz force lonospheric dynamo Coupling with plasmasphere/mag	Horizontal: 1.9° x 2.5° (lat x lon configurable as needed) Vertical: 66 levels (0-140km) 81/125 levels 0-~500km • < 1.0km in Upper Troposphere/ Lower Stratosphere • 1-2 km in strat. • 0.5 scale height in mesosphere/ thermosphere (0.25 scale height in mesosphere/ther mosphere with 125 levels)

Development Updates

- Model development:
 - WACCM5-FV test (25-year run completed)
 - WACCM4-SE (ne30) test (5-year run completed)
 - WACCM/DART
 - WACCM/WACCM-X with specified dynamics (SD)
 - WACCM with Specified Chemistry (SC-WACCM)
 - WACCM Component Set with reduced complexity/reduced resolution above the mesosphere (Discussion).
- Science modules:
 - WACCM Chemistry updates.
 - Ionosphere module development.
 - Global electric circuit.
 - Lunar gravitational tide.
 - Inertial gravity wave parameterization.

Assessment/Production Simulations

- CMIP5: CCSM4/WACCM4 (data released)
- Stratosphere Processes and their Role in Climate (SPARC)
 - SD-WACCM/MERRA (back to 1979): Polar stratosphere and UTLS studies.
 - CCMI: ozone depletion and recovery trend.
 - SOLARIS: Sensitivity to solar spectral irradiance.
 - APSiC: Stratosphere aerosals and climate
- Geo-engineering: GeoMIP.
- Large-ensemble runs (1900-2100).
- Paleoclimate runs (last Millennium).

Some Research Highlights

Turbulence Mountain Stress, SSW and Blocking

De la Torre et al. (2012)

-12-10-8-6-4-2024681012 percent blocking frequency

CMIP5: WACCM4 vs CCSM4

Impact of Stratosphere-Troposphere Coupling on Regional Climate Change?

Change in winter mean rainfall (mm/day)

Courtesy of Dan Marsh

Zonal Mean U: Equator

Cold Pole Bias: Missing Gravity Wave Forcing

Tan et al (in preparation)

ENSO Impacts on Upper Atmosphere

System Coupling (and associated biases)

- Possible role of middle atmosphere on regional climate.
- Turbulent mountain stress (TMS) and statistics of SSW and troposphere blocking.
- Heating/cooling caused by volcano eruption.
- Absence/bias in resolving QBO.
- Cold pole bias in the polar stratosphere (especially SH).
- Bias in mesopause/lower thermosphere temperature and winds: mean structure, variability and tides.
- Thermosphere/ionosphere variability: ENSO, QBO, SSW/planetary waves, and day-to-day scales.