Climate Response and Radiative Forcing for Each Aerosol Species in CESM Prescribed from NCAR and Harvard Concentrations

Qiong Yang¹, Sarah Doherty¹, and Cecilia Bitz² ¹ Joint Institute for the Study of the Atmosphere and Ocean, University of Washington ²Department of Atmospheric Sciences, University of Washington

> Thomas Breider³, Loretta Mickley³, and Daniel Jacob³ ³Harvard University

Model experiment setup

- CESM v1.0.3 with CAM4
- NCAR: use year 2000 aerosol emissions Harvard: use 2008 aerosol mass concentrations from GEOS-Chem
- Aerosol radiative forcing (ARF) is instantaneous radiative forcing estimated by calling the radiative transfer module twice.

Observation Comparisons - BC

Comparison with DC-8 ARCTAS observations

Aerosol Optical Depth

Dust: Optical Depth

NCAR tau

Black Carbon: Optical Depth

Dust: Radiative Forcing@ TOA

 0° 0° E 90° E 135° W 90° W 45° W -2° -4° -4° -6°

RF: radiative forcing

Black Carbon: Radiative Forcing@ TOA

RF: radiative forcing

90 Š

Radiative Forcing @ TOA in Arctic -- NCAR

Radiative Forcing @ TOA in Arctic -- Harvard

TREFHT: NCAR - Harvard

TREFHT: surface air temperature at reference height

TREFHT: NCAR - Harvard

TREFHT: surface air temperature at reference height

Summary

Harvard (or GEOS-Chem) concentrations for year 2008 has much higher aerosol concentrations than in NCAR concentrations for year 2000.

The RF for BC over the Sahara is in excess of 6 W/m², where NCAR is 1-2 W/m². In 2008 Harvard has >1 W/m² over the Arctic.

However, the global mean climate response is about the same for NCAR and Harvard data sets due to cancellation. But there are interesting hemispheric and regional differences.

The global mean climate differences are small in part because dust, sulfate, and OC effects oppose those from BC.

In the Arctic RF in the Harvard estimate is dominated by BC, but recall the Harvard estimate is for year 2008.

Spring BC Concentrations

Harvard data

Comparison with Arctic aerosol optical depth (AOD) observations

AOD across 8 Arctic AERONET Stations

OC is the main AOD component in summer due to large open fire sources

Absorption AOD and deposition of absorbing species (>65N)

Absorption = Mass cpt (g m⁻³) * Mass Absorption Efficiency (m² g⁻¹) [MAE BC=9.5m²g⁻¹, OC= $0.27m^2 g^{-1}$, Dust= $0.03m^2g^{-1}$]

Open Fires were the main source in spring and summer 2008 Significant contribution from non-BC aerosol in spring and summer to AAOD (27%) and Deposition (36%)

Decadal Trends Simulation 1980-2010

- MERRA meteorological fields at 4°x 5° horizontal resolution
- GFED3 open fire emissions for 1997 to 2010 [van der Werf et al., 2010]
- Anthropogenic BC and OC emission trends [Bond et al., 2007] with linear growth scaling factors for Russia and China for 2000-2008 (x2 in 2008)

TREFHT: NCAR - Harvard

RF: radiative forcing F_{TOA} : net flux at TOA TREFHT: surface air temperature at reference height