CESM Migration (Porting) to Yellowstone - A Retrospective

1) CESM Science (Complexity) and Yellowstone
2) CESM Porting Process
3) Pre-Yellowstone (Feb $2012 \rightarrow$ Oct 2012)
4) Early Access (Oct $2012 \rightarrow$ Feb 2013)
5) Advanced Scientific Discovery (Nov $2012 \rightarrow$ Feb 2013)

Mariana Vertenstein, CESM Software Engineering Group Head Thanks to CESM Software Engineering Group and Computer Information System Lab

CESM System Is Growing in Complexity

- Components
- 6 component models: atmosphere, land, sea-ice, ocean, land-runoff, and land-ice plus coupler (2 new components coming soon)
- Each component can be active or prescribed
- Multiple physics options in each component - Chemistry, Biogeochemistry and High-altitude capability
- Various component versions and backwards compatibility (CAM4, CAM5, CLM4.0, CLM4.5, CISM1, CISM2)
- Multi-instance capability for DART data assimilation and SPCAM
- Configurations (Component Sets)
- ~140 supported model configurations
- Resolutions
- ~50 supported resolutions across components
- New refined CAM-SE and MPAS atm, land and ocean grids

The Porting Process

- Verify functionality
- Run hundreds of tests (e.g. restart) across supported model configurations and resolutions
- Validate climate
- Target several popular model configurations
- Completely new validation mechanism created in collaboration with CISL that provides a success/fail validation metric for first time (now viable with Yellowstone capacity)
- Load balance and performance tune
- Maximizing throughput and minimizing idle cycles depends on resolution, configuration and scalability

Pre-Yellowstone : University of Colorado's Janus Computer

CESM verified, validated and performance tuned

Positive

- resolved many problems before Yellowstone access (e.g. new intel compiler settings, high-resolution memory and performance issues)

Negative

- long queue wait times made debugging difficult
- difficult to obtain accurate computational allocation costs for Yellowstone

Yellowstone : Early Access

- Machine performance allowed quick verification tests
- Rapid turnaround sped up debugging
- Example: new validation test
- 100 1-year runs of standard CESM in 13 hours, caught a subtle issue with a compiler function

3 Releases On Feb. 1

-- cesm1.1.1 (support for new model features)

- CAM-SE/CAM5 development code base
- CAM5/CLM4.0 targeted defaults
- Targeting "scientific support" for FV 1°, FV $2^{\circ} 1850$, 20 ${ }^{\text {th }}$ Century and RCP CMIP5 simulations
- Out of box support for yellowstone, titan
-- cesm1.0.5 (support for CMIP5 science)
- Out of box support for yellowstone, titan
- Scientific support for all CAM4 FV CMIP5 simulations
-- ccsm3 (university community demand)

Yellowstone: ASD High Resolution Simulations (Justin Small PI)

- Resolutions

- 25km CAM5/CLM4.0 (spectral element grid)
- 10km POP2 (62 level), CICE (tripole grid)
- $1 / 2^{\circ}$ RTM (lat/lon grid)
- Resolutions allow for resolving ocean eddies and atmospheric hurricanes
- Performance
- ~2 model- years/day on 16,000 processors
- Previous LLNL atlas run of 25km CAM4/ 10KM POP2 (42 levels) had only $1 / 2$ model-years/day on 4000 processors
- Target: multi-decade simulations (grand challenge goal)

3 months of hourly precipitation

3 months of hourly water vapor (TMQ)

1 year of daily SST, sea-level height and sea-ice coverage

