Problem Statement Results Conclusions

Estimation and Propagation of Errors in Ice Sheet Bed Elevation Measurements

Jesse V Johnson¹, Douglas Brinkerhoff¹, Sophie Nowicki², Kevin Sack³

1. University of Montana, 2. NASA Goddard, 3. University of Cape Town

14 February, 2012 Boulder, CO

Problem Statement

Problem Statement

Problem Statement

K-Glacier Terminus

Goal: Estimate values between flightlines and in coverage gaps.

Gool: Estimate values between flightlines and in coverage gaps. $f(X) = \sum_{i \in J > t > i} w_i f(X_i)$

Inverse distance weighting $W_i = \frac{1}{d_i}$, $V_{2r}(W)$ Kriging $W_i \leftarrow V_{2rlogram}$ h

Goal: Estimate values between flightlines and in coverage gaps. Mass Conserving Bed Continuity Equation: $\frac{\partial H}{\partial t} = -\Delta \cdot (\underline{\Omega} H) + \underline{2}$ H = thickness U = Velocity à= accumutation | appation

Mass Conserving Bed Observed 3H = - V (UH)+ 3 solved For What about the flightlines, where H IS known? Call this Ho Variational Form: $I = \left| \left[\frac{1}{2} \left(\nabla \cdot (\overline{U} H) - \hat{J} \right)^2 + \frac{9}{2} \left(H - H_0 \right)^2 \right] d\Omega$ p= { 1 on flight 0 off flight Moss Conserving Bed observed 3H = - V (UH)+ 3 Solved For What about the flightlines, where H IS known? Call this Ho Variational Form: $I = \left| \left[\frac{1}{2} \left(\nabla \cdot (\overline{U} H) - \frac{1}{2} \right)^2 + \frac{1}{2} \left(H - H_0 \right)^2 \right] d \Omega$ $P = \begin{cases} 1 & on flight \\ 0 & off flight \end{cases}$ MINIMIZET Use 1st Variation: SI(H)(SH)

Objective: Find errors in both Krigging and Mass Conserving beds.

Objective: Find errors in both Krigging and Mass Conserving beds. As a function of flight line spacing.

Objective: Find errors in both Krigging and Mass Conserving beds. As a function of flight line Spacing. Prrol MOSS CONS. Krized DX Flight lines

Kriged bed at 1.0 km spacing

Mass conserving bed at 1.0 km spacing

MCB Errors

KRG Errors

Mass conserving bed at 500 m spacing

Kriged bed at 1.5 km spacing

Mass conserving bed at 1.5 km spacing

Mass conserving bed at 500 m spacing

Kriged bed at 2.0 km spacing

Mass conserving bed at 2.0 km spacing

Mass conserving bed at 500 m spacing

Kriged bed at 2.5 km spacing

Mass conserving bed at 2.5 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Kriged bed at 3.0 km spacing

Mass conserving bed at 3.0 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Problem Statement Results Conclusions

Errors in the bed vs. flight spacing

How much do bed errors matter?

Numerical Experiment

Numerical Experiment - 50Km $\sigma \cdot \hat{n} = 0$ - 0=.Z° $\nabla \sigma = \rho g$ $\sigma = \eta \xi$ $\eta = A(\tau) \xi_{I}^{\rho-1}$ 1200m Ty=BUN

Numerical Experiment - JOKM $\sigma \cdot \hat{n} = 0$ - 0=.Z° ∇·σ = ρg σ=ηέ η= Α(τ)έ_πζ 1200 m B=B. B=B./2 Ty=BUN

Numerical Experiment

 $\nabla \sigma = P g$ $\sigma = \eta \xi$ $\eta = A(T) \xi_{II}^{-1}$ M(b,s,B)Ty=BUN

Numerical Experiment

Numerical Experiment

 $M(b,s,B) \Longrightarrow U_{s}$ $b \Longrightarrow b^{*}$

Numerical Experiment

 $| M(b,s,B) \Longrightarrow U_{s} \\ b \Longrightarrow b^{*}$ $M^{-1}(b^*, s, v_s) = S^*$: i ~ b=> b*

Numerical Experiment

 $M(b,s,B) \Longrightarrow U_{s}$ b=>6* $M^{-1}(b^*, s, u_s) => \beta^*$ $M(b^*, S, B^*) \Longrightarrow U_s^* (b \Longrightarrow b^*)$

Numerical Experiment

 $\frac{\partial F}{\partial 2} = - \bigcap \frac{\partial x}{\partial z} + M$ $M(b,s,B) \Longrightarrow U_{s}$ $b = > b^*$ $M^{-1}(b^*, s, u_s) => \beta^*$ $M(b^*, S, B^*) \Rightarrow U_s^*$ b=> h*

Errors in the kinematic boundary condition Mathematically, this is the surface rate of change, given by $\frac{\partial S}{\partial t} = -u \frac{\partial S}{\partial x} + w$

Total error in volume rate of change: Or, $\frac{\partial \Delta V}{\delta t} = \int |\frac{\partial S}{\partial t} - \frac{\partial S^*}{\partial t}|dx / \int \frac{\partial S}{\partial t}dx$

Limit volume change errors to 10% Perturbations can be about 25 m

Limit volume change errors to 10%

Perturbations can be about 25 m

25 m errors in bed can be related to flight line spacing Although 1 σ only contains ~ 2/3 of errors.

25 m errors in bed can be related to flight line spacing Although 1 σ only contains ~ 2/3 of errors.

Conclusions

Flight line spacing should be \sim 1.8 km if MCB is used.

Conclusions

This is the first example in a general framework for "physics based interpolation"

Our variational problem

$$\mathcal{L}(H, \bar{\mathbf{u}}, \dot{a}) = \int \frac{1}{2} \underbrace{\rho(H - H_o)^2}_{\text{the data}} + \frac{\gamma}{2} \underbrace{\left(\nabla \cdot (\bar{\mathbf{u}}H) - \dot{a}\right)^2}_{\text{PDE involving data}} d\Omega$$
$$\delta \mathcal{L}(\delta H, \bar{\mathbf{u}}, \dot{a}) = 0$$