Estimation and Propagation of Errors in Ice Sheet Bed Elevation Measurements

Jesse V Johnson ${ }^{1}$, Douglas Brinkerhoff ${ }^{1}$, Sophie Nowicki², Kevin Sack ${ }^{3}$

1. University of Montana, 2. NASA Goddard, 3. University of Cape Town

14 February, 2012
Boulder, CO

Problem Statement

Problem Statement

Problem Statement $\xrightarrow[\Delta]{\text { AR }}$

Ice

Problem Statement

Problem Statement

Problem Statement Plan View

Problem Statement Plan View

Problem Statement Plan View

Problem Statement

$$
\begin{aligned}
& \text { GPS } \\
& \text { GPStellite }
\end{aligned}
$$

Ise
" Nobed

- Creturn!

Problem Statement Plan View

Goal: Estimate values between flightlines and in coverage gaps.

Goal: Estimate values between flight lines and in coverage gaps.

$$
\begin{array}{l|llll}
\text { Interpolation: } & \left\lvert\, \begin{array}{lll}
x_{1} & & \\
\cdot 0 & x & x_{4} \\
x_{2} & \cdot & x_{i \in d a t a}
\end{array}\right. \\
f(x)=\sum_{i} w_{i} f\left(x_{i}\right) & &
\end{array}
$$

Inverse distance weighting

$$
\begin{gathered}
W_{i}=1 / d_{i} \operatorname{var(h)} \\
w_{i} \Leftarrow \operatorname{Varlogram~} h^{\%}
\end{gathered}
$$

Goal: Estimate values between flight lines and in coverage gaps. Mass Conserving B ed Continuity Equation:

$$
\frac{\partial H}{\partial t}=-\nabla \cdot(\vec{U} H)+\dot{\partial}
$$

H = thickness
$\vec{u}=$ velocity
$\dot{a}=$ accumulation $/$
ablation

Mass Conserving Bed observed

$$
\frac{\partial H}{\partial t}=-\nabla \cdot(\vec{U} H)+\dot{j} \text { solved for }
$$

What about the flightlines, where H is known? Call this Ho
Variational Form:

$$
\begin{array}{r}
\left.I=\int \sqrt{\frac{1}{2}}(\nabla \cdot(\bar{u} H)-\dot{a})^{2}+\rho / 2\left(H-H_{0}\right)^{2}\right] d \Omega \\
\rho= \begin{cases}1 & \text { on flight } \\
0 & \text { off flight }\end{cases}
\end{array}
$$

Mass Conserving Bed observed

$$
\frac{\partial H}{\partial t}=-\nabla(\vec{U} H)+\dot{j} \text { solved for }
$$

What about the flightlines, where H is known? Call this Ho
Variational Form:

$$
\begin{aligned}
& \left.I=\int \sqrt{\frac{1}{2}}(\nabla \cdot(\bar{u} H)-\dot{a})^{2}+\rho / 2(H-H 0)^{2}\right] d \Omega \\
& \text { Minimize } I \quad \rho=\left\{\begin{array}{l}
1 \text { on flight } \\
0 \text { off flight }
\end{array}\right. \\
& \text { use ist Variation: } \delta I(H)(\delta H)
\end{aligned}
$$

Objective:
Find errors in both krigging and mass conserving beds.
objective:
Find errors in both Krigging and mass conserving beds. As a function of flight line sparing.
objective:
Find errors in both krigging and mass conserving beds.

As a function
flight line sparing.

mass cons. Kriged

Thickness on flight lines

Work flow for error analysis

Kriged bed

Surface speed

Kriged bed at 1.0 km spacing
Mass conserving bed at 1.0 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Kriged bed at 1.5 km spacing
Mass conserving bed at 1.5 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Kriged bed at 2.0 km spacing
Mass conserving bed at 2.0 km spacing

Kriged bed at 2.5 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Kriged bed at 3.0 km spacing

Mass conserving bed at 3.0 km spacing

Mass conserving bed at 500 m spacing

Error Structure

Errors in the bed vs. flight spacing

How much do bed errors matter?

Δx flight lines

How much do bed errors matter?

Δx flight lines

How much do bed errors matter?

How much do bed errors matter?

Δx flight lines

Numerical Experiment

Numerical Experiment

Numerical Experiment
\qquad

Numerical Experiment

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\nabla \cdot \sigma=p g \\
\sigma=\eta \dot{\varepsilon} \\
\eta=A(T) \dot{\varepsilon}_{\mathbb{I}}^{n-2}
\end{array}\right\} M(b, S, B) \\
\Rightarrow U, P \\
\tau_{b}=B^{2} \cup,
\end{array}\right\}
$$

Numerical Experiment

$$
M(b, s, B) \Rightarrow U_{S}
$$

Numerical Experiment

$$
\begin{gathered}
M(b, s, B) \Rightarrow U_{s} \\
b \Rightarrow b^{*}
\end{gathered}
$$

Numerical Experiment

$$
\begin{gathered}
M(b, s, B) \Rightarrow U_{s} \\
b \Rightarrow b^{*} \\
M^{-1}\left(b^{*}, s, U_{s}\right) \Rightarrow
\end{gathered}
$$

Numerical Experiment

$$
\begin{aligned}
& M(b, s, B) \Rightarrow U_{s} \\
& b \Rightarrow b^{*} \\
& M^{-1}\left(b^{*}, s, U_{s}\right) \Rightarrow B^{*} \\
& M\left(b^{*}, s, B^{*}\right) \Rightarrow U_{s}^{*}, i \leqslant b \Rightarrow b^{*}
\end{aligned}
$$

Numerical Experiment

$$
\begin{aligned}
& M^{2}(b, s, B) \Rightarrow U_{s} \\
& b \Rightarrow b^{*} \\
& M^{-1}\left(b^{*}, s, U_{s}\right) \Rightarrow B^{*} \\
& M\left(b^{*}, s, B^{*}\right) \Rightarrow U_{s}^{*} \\
& M i, b-b \Rightarrow b^{*}
\end{aligned}
$$

Errors in the kinematic boundary condition

Mathematically, this is the surface rate of change, given by $\frac{\partial S}{\partial t}=-u \frac{\partial S}{\partial x}+w$

Total error in volume rate of change:

$$
\text { Or, } \frac{\partial \Delta V}{\delta t}=\int\left|\frac{\partial S}{\partial t}-\frac{\partial S^{*}}{\partial t}\right| d x / \int \frac{\partial S}{\partial t} d x
$$

Limit volume change errors to 10\%

Perturbations can be about 25 m

Limit volume change errors to 10\%

Perturbations can be about 25 m

25 m errors in bed can be related to flight line spacing

 Although 1σ only contains $\sim 2 / 3$ of errors.

25 m errors in bed can be related to flight line spacing

 Although 1σ only contains $\sim 2 / 3$ of errors.

Conclusions

Flight line spacing should be $\sim 1.8 \mathrm{~km}$ if MCB is used.

Conclusions

This is the first example in a general framework for "physics based interpolation"

Our variational problem

$$
\begin{gathered}
\mathcal{L}(H, \overline{\mathbf{u}}, \dot{a})=\int \frac{1}{2} \underbrace{\rho\left(H-H_{0}\right)^{2}}_{\text {the data }}+\frac{\gamma}{2} \underbrace{(\nabla \cdot(\overline{\mathbf{u}} H)-\dot{a})^{2}}_{\text {PDE involving data }} d \Omega \\
\delta \mathcal{L}(\delta H, \overline{\mathbf{u}}, \dot{a})=0
\end{gathered}
$$

