Recent progress with the BISICLES dymamical core in CISM

Dan Martin
Lawrence Berkeley National Laboratory
Land Ice Working Group February 14, 2013

Bisime
断追 University of (10) BRISTOL

Berkeley-ISICLES (BISICLES)

- DOE ISICLES-funded project to develop a scalable adaptive mesh refinement (AMR) ice sheet model/dycore
- Local refinement of computational mesh to improve accuracy
- Use Chombo AMR framework to support block-structured AMR
- Support for AMR discretizations
- Scalable solvers
- Developed at LBNL
- DOE ASCR supported (FASTMath)
- Alternate dycore interface to CISM
- Collaboration with LANL and Bristol (U.K.)
- Continuation in SciDAC-funded PISCEES.

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
- Expansion in $\varepsilon=\frac{[H]}{[L]}$ and $\lambda=\frac{\left[\tau_{\text {shear }}\right]}{\left[\tau_{\text {normal }}\right]}$ (ratio of shear \& normal stresses)
- Large λ : shear-dominated flow
- Small λ : sliding-dominated flow
- Computing velocity to $O\left(\varepsilon^{2}\right)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- Similar formal accuracy to Blatter-Pattyn $O\left(\varepsilon^{2}\right)$
- Recovers proper fast- and slow-sliding limits:
- SIA $\left(1 \ll \lambda \leq \varepsilon^{-1 / n}\right)$-- accurate to $O\left(\varepsilon^{2} \lambda^{n-2}\right)$
- SSA $(\varepsilon \leq \lambda \leq 1)$ - accurate to $O\left(\varepsilon^{2}\right)$

整选 University of

"L1L2" Model (Schoof and Hindmarsh, 2010), cont.

- Can construct a computationally efficient scheme:

1. Approximate constitutive relation relating $\operatorname{grad}(u)$ and stress field τ with one relating $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$, vertical shear stresses $\tau_{x z}$ and $\tau_{x z}$ given by the SIA / lubrication approximation and other components $\tau_{x x}(x, y, z)$, $\tau_{x y}(x, y, z)$, etc
2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$ and $\operatorname{grad}\left(z_{s}\right)$, ice thickness, etc
3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $\left.u\right|_{z=b}(x, y)$
4. $u(x, y, z)$ can be reconstructed from $\left.u\right|_{z=b}(x, y)$

Modified "L1L2" Model (ssA*)

- Can construct a computationally efficient scheme:

1. Approximate constitutive relation relating $\operatorname{grad}(u)$ and stress field τ with one relating $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$, vertical shear stresses $\tau_{x z}$ and $\tau_{x z}$ given by the SIA / lubrication approximation and other components $\tau_{x x}(x, y, z)$, $\tau_{x y}(x, y, z)$, etc
2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $\operatorname{grad}\left(\left.u\right|_{z=b}\right)$ and $\operatorname{grad}\left(z_{s}\right)$, ice thickness, etc
3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $\left.u\right|_{z=b}(x, y)$
4. $u(x, y, z)$ cannan (x v)
5. Use $u(x, y, z)=\left.u\right|_{z=b}(x, y)$ (neglect vertical shear in flux velocity)

BISICLES Results - MISMIP3D

Experiment P75R:
 (Pattyn et al (2011)

- Begin with steady-state (equilibrium) grounding line.
- Add Gaussian slippery spot perturbation at center of grounding line
- Ice velocity increases, GL advances.
- After 100 years, remove perturbation.
- Grounding line should return to original steady state.
- Figures show AMR calculation:
- $\Delta x_{0}=6.5 \mathrm{~km}$ base mesh,
- 5 levels of refinement
- Finest mesh $\Delta x_{4}=0.195 \mathrm{~km}$.
- $\mathrm{t}=0,1,50,101,120,200 \mathrm{yr}$
- Boxes show patches of refined mesh.
- GL positions match Elmer (full-Stokes)

$\mathrm{x}(\mathrm{km})$

第保 4 University of

MISMIP3D (cont): L1L2 (SSA*) Spatial Resolution

- Very fine ($\sim 200 \mathrm{~m}$) resolution needed to achieve reversability!

教) Q2 8 BRISTOL

MISMIP3D: SSA vs. "L1L2" or "SSA*"

- Direct comparison of SSA vs. SSA*
- (fully resolved spatially, same numerics, etc)
- Note difference in steady-state GL positions

RTRTEES

BISICLES Results - Ice2Sea Amundsen Sea

- Study of effects of warm-water incursion into Amundsen Sea.
- Results from Payne et al, (2012), submitted.
- Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction and damage coefficients to match Joughin 2010 velocity.
- Background SMB and basal melt rate chosen for initial equilibrium.
- SMB held fixed.
- Perturbations in the form of additional subshelf melting:
- derived from FESOM circumpolar deep water
- $\sim 5 \mathrm{~m} / \mathrm{a}$ in $21^{\text {st }}$ Century,
- ~25 m/a in $22^{\text {nd }}$ Century.

Ice2Sea Amundsen (cont)

Amundsen Sea Ice Sheet Simulation

One possible climate scenario (Payne et al.) simulated using SciDAC-funded BISICLES code

管 20 BRISTOL

RTSTRES
道 University of (2) BRISTOL

Ice2Sea Amundsen (cont)

- Need at least 2 km resolution to get any measurable contribution to SLR.
\square Appears to converge at first-order in Δx

SLR vs. year, Amundsen Sea Sector

Ice2Sea Amundsen (cont) - Thwaites?

- In 400 year run, Thwaites destabilizes as well.
- Same forcing as previous run, subshelf melting held constant past 2200.
- Thwaites is very stable, until it tips.

Recent Code developments

- BISICLES/CISM coupling

\square FAS multigrid solver

- Embedded boundary for Grounding lines

CISM/BISICLES coupling update

- Extension of existing serial coupled code to work in the fully distributed case (no serial bottlenecks)
- CISM (F90) to BISICLES (C++)
- General API design for coupling alternate dynamical cores into CISM
- Moderately complex build process (working to streamline)
- CISM owns "main", problem setup, coupler to CESM, other physics (like isostasy, hydrology, etc)
- CISM hands control to BISICLES, which evolves the ice sheet
- BISICLES passes fields like thickness, velocity back to CISM

CISM/BISICLES coupling update (cont)

Office of
Science
RTSTELES
EERKELEY LAE
啓 University of
2 BRISTOL

Embedded Boundary (EB) for Grounding Lines

- Embedded Boundary (EBChombo)

- Currently force GL and ice margins to cell faces
- "Stair-step" discretization

Known to be inadequate from experience with
 Stefan Problem in other contexts!

- Use Chombo Embedded-boundary support to improve discretization of GL's and ice margins.
- Can solve as a Stefan Problem, with appropriate jump conditions enforced at grounding line. (as in Schoof, 2007)

New FAS Multigrid nonlinear solver

ㅁ Full Approximation Storage (FAS) - nonlinear multigrid

- Picard, JFNK:
- linear solver nested inside of nonlinear one
- Linear Multigrid solvers (residual-correction form) work well.
- FAS Multigrid - fully nonlinear solver (no outer solver)
- Can outperform JFNK/MG
- More robust (don't need good initial guess)
- Simpler to implement and maintain
- Nonlinear convergence similar to MG linear convergence

Antarctica (Ice2Sea)

- Refinement based on Laplacian(velocity), grounding lines
- 5 km base mesh with 3 levels of refinement
- base level (5 km): 409,600 cells (100% of domain)
- level 1 (2.5 km): 370,112 cells (22.5% of domain)
- Level $2(1.25 \mathrm{~km})$: 955,072 cells (14.6% of domain)
- Level 3 (625 m): 2,065,536 cells (7.88% of domain)

Mesh Resolution

简红 University of \&2 BRISTOL

Next Steps

- Continue work with CISM/BISICLES hybrid code
- Fully 2-way coupling
- Eventual coupling to CESM
- Embedded boundary approach is promising
- More solver improvements
- Full-Stokes dynamical core

Acknowledgements:

- US Department of Energy Office of Science (ASCR) funded BISICLES project
- US Department of Energy Office of Science (ASCR/BER) SciDAC applications program (PISCEES)
- Steph Cornford, Tony Payne at the University of Bristol
- Bill Lipscomb, Doug Ranken, Stephen Price (LANL)
- Mark Adams (Columbia University)

Extras

Linear Solvers - GAMG vs. Geometric MG

