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1. Deduce basal sliding coefficients C(x,y) by simple model inversion  
                                                                                    - (like last year) 
 
2. Don’t impose any constraints due to basal temperature or hydrology 
                                                                                   - (unlike last year) 
 
3. Then compare C(x,y) patterns with basal temperature, melt, topography 
                                                               - new parameterization for C(x,y)?  
 
 
 

Outline 

 
 
 
4. Fails…Why? 
 



Blue:      C = 10-10 m a-1 Pa-2   
Orange: C = 10-5  m a-1 Pa-2 

Crude C(x,y) map:                      
sediment if rebounded bed is below sea level,  
hard bedrock if above 

where 
ub  = basal ice velocity,  
τb  = basal shear stress , 
N  = effective pressure,  
Tb = basal temperature,  
f(Tb) = 0 if bed is frozen, 1 if bed is at melt point 

 

• Sliding velocity depends on basal shear stress, intrinsic bed 
conditions, and basal hydrology or temperature: 

                                                   or  
 

ub = C(x,y) f(Tb) τb
n  ub = C(x,y) N-qτb

n  

Common basal sliding laws in Antarctic-wide models 



Golledge et al., PNAS, 
2012 

Ritz et 
al., 
JGR, 
2001 

Typical surface elevation (or thickness) errors  

model minus observed: 

Martin et al.,  
The Cryo., 
2011 

Pollard and DeConto, The Cryo., 
2012 

Whitehouse et al. 
QSR, 2012 

• Axiom of talk:  

    C(x,y) is primary cause of O(500 m) 
elevation errors in Antarctic 
continental paleo ice-sheet models 

 
 

ub = C(x,y) f(Tb) τb
n  



Ignores ∂/∂x, ∂/∂y’s….as if effects are local ! 

Ignores all other potentially canceling model errors !  

• Run model forward 

• Every 2000 years, decrease (stiffen) C(x,y) if the local ice 
surface is too low, or increase (soften) C(x,y) if local surface 
is too high: 
 

 

 

 

 

• Run model for ~100,000 years until convergence 

 
-  Cnew = C 10∆z /2000 
     where ∆z = model – observed surface elevation (m) 

-  Constrain C to remain in range 10-15 to 10-4 m a-1 Pa-2 

 

 

Very simple procedure to deduce basal sliding coefficients C(x,y), 
fitting to observed ice surface elevations 

makes  
surface 
lower 

slipperier 
C ↑ 

stickier  
C ↓ 

makes 
surface 
higher 

air 

ice 

rock 

Simple Inversion Method 

ub = C(x,y) f(Tb,…) τb
n  



this talk 

2 strategies in using the inverse method 

Imagine that we know f(…), and apply it during 
the inversion procedure, to deduce C(x,y) 
representing intrinsic bedrock properties.  

 

ub = C(x,y)  f (Tb , hydrol., topog., … ) τb  

  

Don’t apply f(…) during inversion. Invert for C'(x,y). 
Then try to find a function f  so that C' =C.f ,           
i.e., f (…) ≈ 0 in regions with C'≈0, and f =1 outside 

We can write the sliding law either as or as 

 

 

 

ub = C'(x,y) τb  

(last year’s talk, and The Cryo, 2012) 



Results of inverse method, no basal temperature constraint 

Final 
elevation 
error Δhs 

Deduced 
sliding 

coefficients C' 

log1 0 (m a-1 Pa-2) 

 

• Purple regions are where sliding ≈ 0 

• Ideally, they correspond to frozen beds, 
or no basal water supply 

 

Basal temperature Tb 

 

• But they don’t correspond to Tb< 0 

 

 

r = 0.109 

 

• Can we find a function f(Tb, topog., melt) 
that does?  

 



Attempt at f(…) using basal temperature and sub-grid bed roughness 

Basal temperature Tb 

Sub-grid standard deviation 
of Bedmap2 elevations (s) f (Tb,s) 

= 

Bed topography (Bedmap2) 

1 

Tb
  

0  

f 

0 

-.02 s 

C' = C(x,y) f(Tb, s)  

“Sub-grid valley bottoms may 
still be unfrozen even if Tb < 0” 

 

× 

log1 0 (m a-1 Pa-2) 

Deduced sliding coefficients C' 
 

• But resulting “f(Tb,s) ≈ 0” pattern does 

not resemble purple regions C'≈ 0 

• Main problem is that Tb and s both 
resemble large-scale bed topography  

 

 

r = -0.006 



Attempt at f(…) using basal liquid supply (m/yr) 

C' = C(x,y) f(B) 
 

 

B (m/y) = basal liquid supply due to: 
 • melt (GHF+friction+conduction)  
   plus 
 • percolation from surface 

= 

Basal melt (m/y) 

log1 0 (f) 

log10 f (B) Percolation from surface (m/y) 

+ 

Bed topography (Bedmap2) 

log10(B) 
-6  

log10(f) 

0 

-3 
-3  0  

3 
log f = 3 + log B 

log1 0 (m a-1 Pa-2) 

Deduced sliding coefficients C' 
 

• Again, resulting “f(B) ≈ 0” pattern does 

not resemble purple regions C'≈ 0 

• Again, main problem is that B resembles 
large-scale bed topography  

 

 

r = 0.018 



Why have these attempts at f(…) failed? 

 

1) Incorrect internal deformation (mostly SIA)                   - 
incorrect enhancement factor E ?                             

 

2) Incorrect longitudinal stress dynamics (hybrid model)  

 

3) Basal hydrologic flow system (re-arranges B) 

 

4) Geothermal Heat Flux distribution 

 

 



Why # 1:  Results of inverse method, different enhancement factors E 
Inverse with no basal temperature constraint on sliding 

E=0.1 E=0.5 E=0.75 E=1 E=2 

log1 0 (m a-1 Pa-2) 

Final 
elevation 
error Δhs 

Deduced 
sliding 

coefficients C' 

Basal 
temperature Tb 

• Increasing E  requires less sliding, more areas with C'≈ 0 (around EAIS flanks) 

• None of the purple C'≈ 0 patterns resemble frozen-bed patterns Tb<0  

 

 

 

• Fabric?  …E(x,y,z)?  …Anisotropic models?   

                        e.g., Wang and Warner, Ann. Glac, 1999;  Seddick et al., TC 2011 

 

r = 0.109 r = 0.053 r = -0.012 r = 0.008 r = 0.160 



log1 0 (m a-1 Pa-2) 

Why # 2:  Incorrect longitudinal-stress dynamics (hybrid model) 

Deduced 
sliding 

coefficients C' 

• Many areas with C'≈ 0 (purple) are close to ice sheet margins 

• Could be compensating for dynamical errors in hybrid model  
– too much internal shear flow near margins ?  

• Test with Full Stokes models 

 



Why # 3:  Basal hydrologic flow system (re-arranges B) 

 
• Current model lacks basal hydrology 

 
• Basal flow could transport water supply B, and 

produce patterns like purple C' > 0   regions (?) 

Pattyn, EPSL, 2010 

Basal melt (m/y) 

Subglac. flux (103 m2 y-1) 

log1 0 (m a-1 Pa-2) 

Deduced sliding coefficients C' 

Basal melt (m/y) 

A subglacial water-flow model for West Antarctica 
A.M. Le Brocq, A.J. Payne, M.J. Siegert, R.B. Alley 

J. Glaciol., 2009 



Why # 4:  Geothermal Heat Flux distribution 

Geothermal heat flux (mW m-2): 

two-valued 
(used here) 

Fox Maule et al., 
Science, 2005 

 mW m-2 

Shapiro and Ritzwoller, 
EPSL, 2004 

Pattyn, EPSL, 2010 

 
• Perhaps real GHF distribution has more structure, influencing 

basal melt  
 

• Nb: Modern Siple coast is streaming, Wilkes basin outlet is not – 
due to high GHF and volcanism upstream of Siple? * 
 

      * Behrendt, GPC 2004; Blankenship et al., ARS 2001; Parizek et al., GRL 2002  

Ice elevations (observed) 



But…regardless of basal physics…the only input to the model 
          with fine structure are Bedmap2 elevation maps 

log1 0 (m a-1 Pa-2) 

Deduced sliding coefficients C' 

  Surface:    2hs = ∂2hs/∂x2 + ∂2hs/∂y2 

Δ      

 
• Still no clear connection 

with C'≈ 0 (purple) patterns 

• So where do the C'≈ 0 
patterns come from in the 
model ? 
 

• Do they indicate any real 
physical process ?  

 

cf. Plan curvature (Le Brocq et al., GRL 2008) 

r = 0.281 

        Bed:    2hb = ∂2hb/∂x2 + ∂2hb/∂y2 

Δ      

r = 0.193 

Bed |slope|:  √ [ (∂hb/∂x)2 + (∂hb/∂y)2 ] 

r = -0.133 



End 



Results of inverse method, no basal temperature constraint 

Final 
elevation 
error Δhs 

Deduced 
sliding 

coefficients C' 

log1 0 (m a-1 Pa-2) 

 

• Purple regions are where sliding ≈ 0 

• Ideally, they correspond to frozen beds, 
or no basal water supply 

 

Basal temperature, 
Pattyn, EPSL, 2010 

Basal temperature Tb 

 

• But they don’t correspond to Tb< 0 

 

 

r = 0.109 

 

• Can we find a function f(Tb, topog., melt) 
that does?  

 



 

• If E is too small, nearly all 
motion has to be basal sliding      
⇒ positive surface errors 
where base is frozen 

• If E is too large, too much 
internal flow. If it exceeds the 
balance velocity, C inversion 
can’t help ⇒ large ubiquitous 
negative surface errors 

• Best results for E ≈ 1 

E = 8 
E = 4 

E = 2 

E = 1 

E = 0.5 

E = 0.1 

Constraining the internal-flow enhancement factor E 



Inverse with no basal T effect, E=0.75 x 
factor 1 to 0.3 depending on distance 
to nearest dome 

Δhs 

C(x,y) 

Tb 

log1 0 (m a-1 Pa-2) 

Results of inverse method, no Tb effect,  
E=0.75 x f(distance to dome)  

General or review: Alley et al., 1988, Nature. Gagliardini et al., 2009,  Low Temp. Sci. 

E = f (τxz, τzz): Wang and Warner, 1999, Ann. Glac. 

                    Ren et al., 2011, JGR.  

E = f(z): Mangeney and Califano, 1998, JGR 

           Graversen et al., 2011, Clim. Dyn. 

Anisotropic models: Gillet-Chaulet et al., 2005, J. Glac. (GOLF law) 

         Ma et al., 2010, J. Glac. → E (sheet vs. shelf). 

Seddick et al., 2011, The Cryo (CAFFE model) 

Fabric, anisotropy, variable enhancement coefficients:  

r = 0.132 



Results of inverse method, with basal temperature constraint 

Final 
elevation 
error Δhs 

Deduced 
sliding 

coefficients 
C(x,y) 

Basal 
temperature 

Tb 

 

• Δhs over mountain ranges is improved by 
dependence on s 

• But not completely – hs still too high over mountains 

Basal 
fraction 

unfrozen 
(0 to 1) 

ub = C(x,y) f(Tb. s) τb
n  

log1 0 (m a-1 Pa-2) 

where f(Tb) =  0 for frozen bed,  ramps to 1 for bed at melt point, 
and width of ramp increases with sub-grid bed roughness s  



Plan curvature 

Le Brocq et al., GRL, 2008 



Previous basal inversions for Antarctica 

 

• Previous work has deduced basal-stress or sliding-coefficient maps using 
control theory (Lagrangian multiplier/adjoint) methods, 

      fitting modeled vs. observed velocities, with ice geometry  
      (thickness, elevation) fixed from observations. 

•  Regional: MacAyeal,1992; Vieli and Payne, 2003; Joughin et al. 2009; Morlighem et al., 2010.  

        Continental: ISSM, Larour et al., ISSM, issm.jpl.nasa.gov;  Bueler et al., PISM, www.pism-docs.org. 
                                      Also Price et al. (PNAS, 2011), Greenland, local method. 

Basal drag coefficient, Ice Stream 
E. Macayeal JGR, 1992. 

Ice Stream E 
(MacAyeal, 1992): 

Basal stress, Pine Isl;and and 
Thwaites Glaciers. Joughin et al., 
J. Glac., 2009 

Basal stress, Pine Island Gl:  
Morlighem et al., GRL, 2010 

Pine Island and Thwaites Glaciers 
(Joughin et al., 2009; Morlinghem et al., 2010): 

PISM basal drag 
coefficient (Pa s m-1). 
Lingle et al., JPL PARCA 
meeting, 2007 

ISSM basal stress 
(Morlighem, pers. 
comm., 2012) 

ISSM (JPL): PISM (U. Alaska): 
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Summary 
 

• Simple inverse method “works”:  

    (a) converges, (b) reduces surface elevation errors, (c) deduces reasonable C(x,y) patterns. 

 

• Independent of ice model. Just needs:   

    (a) run for ~200,000 years, (b) bedrock parameter(s) that make ub increase or decrease.  

 

• BUT some of the deduced C(x,y) must be due to other model errors, not real bed conditions.  

    Lesser of two evils: cancelling errors vs. O(500m) biases in surface elevation 
 

  

 

 

• Next steps: 

    - Combine with large-ensemble techniques?  (Stone et al., The Cryo. 2010; Tarasov et al., EPSL, 2011) 

    - Apply to last deglaciation  (Briggs et al., ISAES abs., 2011.; Whitehouse et al., QSR, 2012) 
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