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Motivation

Rising ELA causes new areas of melt/crevassing (West
Greenland)

Englacial water rapid means of causing warmth in ice sheet

Enthlapy methods provide efficient and precise way of dealing
with phase change in thermodynamic models (Aschwanden
et. al 2012)



Goals

e Compare temperature and enthalpy-based thermodynamic
formulations for use in CISM

e Explore fundamental physics of englacial heat transfer (cryo-
hydrologic warming) to improve parameterization



Temperature Based Approach
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Enthalpy (J/kg)

Apparent Heat Capacity Method

H=specific enthalpy
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Enthalpy (J/kg)

Apparent Heat Capacity Method
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Enthalpy Gradient Method
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H=specific enthalpy
¢, ~water content
C=heat capacity
L=latent heat of fusion

For small ¢, K, small positive
diffusivity

For large ¢,, K, chosen to match
analytical solutions for crevasse
refreezing in semi-infinite
domains



CTS Tracking
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Similar polythermal
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water content linear across
AB

Exact solution for © and ¢,
since both a function of
enthalpy



Cryo-Hydrologic Warming

Standing water in crevasses Moulin
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Cryo-Hydrologic Warming (CHW):

e Warming generated by meltwater refreezing and/or persistence
within the englacial cryo-hydrologic system (CHS)....substantially
faster than conduction of warmth from surface

e Potentially rapid thermo-mechanical feedback mechanism



DUAL-CONTINUUM MODEL
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R — average half-spacing between elements of
CHS (varies with x and z, and possibly time)

- CHW (cooling, heat loss)




High-Resolution CHS Modeling
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CHS — Conduction Case

e Comparable with Stefan
Oice =-11°C | g -0 Problem analytical solutions
d) — crevasse PMP
W ¢, =1 e Rate of thermal response
affected by englacial water
e body features (width, depth,
1m width spacing) and background ice

temperature

50m

Ultimate warming after full refreezing:
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CHS — Conduction Case
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CHS In TD5 Test Case

e Sermeq Avannarleq — upward ascent of ELA

e Accumulation to ablation zone transition (new melt input)
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CHS In TD5 Test Case
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e |llustrative example of CHW
causing transition to temperate

Ice

e Competing mechanisms affect
time-scale of thermal response

englacial water body width
englacial water body spacing
stretching in high shear regions
background ice temperatures
strain heating



CHS Modeling Conclusions

Enthalpy gradient method can be applied to 2D model
involving phase change

Englacial water can cause significant warmth with time-scale
dependent on factors such as:

— width

— spacing

— background ice temperature

— stretching in high shear flow



Future Work

Improve understanding of CHW time-scale and competing
thermal phenomenon

Use understanding of small-scale physics to improve CHW
parameterization

Implement enthalpy-based thermodynamic formulation and
CHW parameterization in CISM

Explore other englacial water body geometries and dynamic
process of draining, refilling, and fracturing












e Direct evidence for CHW: Jarvis and
Clarke [1974], Steele Glacier - crevasses
formed during surge, filled with water
e Model calculations suggested

Ice temperature 15m from crevasse | persistence of liquid water for 20-30 yrs
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