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Motivation 

• Rising ELA causes new areas of melt/crevassing (West 
Greenland) 

• Englacial water rapid means of causing warmth in ice sheet 
• Enthlapy methods provide efficient and precise way of dealing 

with phase change in thermodynamic models (Aschwanden 
et. al 2012) 

 



Goals 

• Compare temperature and enthalpy-based thermodynamic 
formulations for use in CISM 

• Explore fundamental physics of englacial heat transfer (cryo-
hydrologic warming) to improve parameterization 



Temperature Based Approach 
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Heat flux balance: 
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Advection-Conduction: 
Κ=diffusivity 
Q=strain heat 
C=heat capacity 

κ=conductivity 
L=latent heat of fusion 
φw=water content 

• straightforward for cold ice 
• requires CTS tracking in 

polythermal conditions 



Apparent Heat Capacity Method 
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H=specific enthalpy 
κ=conductivity 
C=heat capacity 
 



Apparent Heat Capacity Method 
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• works well for low φw 

• high φw causes artificial 
sensible heat flux 

H=specific enthalpy 
κ=conductivity 
C=heat capacity 
 

Capparent for temperate ice 



Enthalpy Gradient Method 
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cold sensible heat flux 

PMP sensible heat flux “Darcy-like” diffusion  
of liquid water 

H=specific enthalpy 
φw=water content 
C=heat capacity 
L=latent heat of fusion 

• For small φw, Ko small positive 
diffusivity 

• For large φw, Ko chosen to match 
analytical solutions for crevasse 
refreezing in semi-infinite 
domains  
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• CTS found through iteration 
• φw=0.01 in temperate ice, 

assumed value 
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• Similar polythermal 
temperature profile 

• Estimate of φw by assuming 
water content linear across 
Δθ 

• Exact solution for θ and φw 
since both a function of 
enthalpy 
 

Temp. 
Approach 

App. Heat 
Capacity 

Enthalpy 
Gradient 



Cryo-Hydrologic Warming 
Moulin Standing water in crevasses 

Cryo-Hydrologic Warming (CHW): 
• Warming generated by meltwater refreezing and/or persistence 

within the englacial cryo-hydrologic system (CHS)….substantially 
faster than conduction of warmth from surface 

• Potentially rapid thermo-mechanical feedback mechanism 
 



Horiz. advection Vert. advection 

Vert. conduction 
Strain 
heating CHW (warming) 

Conventional thermodynamic model augmented 
with CHW 
R – average half-spacing between elements of 
CHS (varies with x and z, and possibly time) 

enthalpy change (winter refreezing) 

Vert. conduction 

- CHW (cooling, heat loss) 

Cryo-Hydrologic System (CHS) 
“Background” Ice 

  

x (along  
flowline) 

z (vertical) 
DUAL-CONTINUUM MODEL 



High-Resolution CHS Modeling 
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• Eulerian reference 
frame 

• Specified velocity 
field, IC temp., 
englacial water body 
geometry and spacing  

• One-time filling of 
englacial water bodies 
 



CHS – Conduction Case 
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Ultimate warming after full refreezing: 

• Comparable with Stefan 
Problem analytical solutions 

• Rate of thermal response 
affected by englacial water 
body features (width, depth, 
spacing) and background ice 
temperature 



CHS – Conduction Case 

t=5 years 




CHS in TD5 Test Case 
• Sermeq Avannarleq – upward ascent of ELA 
• Accumulation to ablation zone transition (new melt input) 
• InSAR data shows velocity acceleration 
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CHS in TD5 Test Case 

t=4 years 




TD5 Post-CHW 
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Cold ice 
• Illustrative example of CHW 

causing transition to temperate 
ice 

• Competing mechanisms affect 
time-scale of thermal response 
– englacial water body width 
– englacial water body spacing 
– stretching in high shear regions 
– background ice temperatures 
– strain heating 

 

Temperate ice 



CHS Modeling Conclusions 

• Enthalpy gradient method can be applied to 2D model 
involving phase change 

• Englacial water can cause significant warmth with time-scale 
dependent on factors such as: 
– width 
– spacing 
– background ice temperature 
– stretching in high shear flow 



Future Work 

• Improve understanding of CHW time-scale and competing 
thermal phenomenon 

• Use understanding of small-scale physics to improve CHW 
parameterization 

• Implement enthalpy-based thermodynamic formulation and 
CHW parameterization in CISM 

• Explore other englacial water body geometries and dynamic  
process of draining, refilling, and fracturing 

 









• Direct evidence for CHW: Jarvis and 
Clarke [1974], Steele Glacier - crevasses 
formed during surge, filled with water 
• Model calculations suggested 
persistence of liquid water for 20-30 yrs    Ice temperature 15m from crevasse 

Initial 
temperature 
(-8 to -7•C) 

7 years after surge 
(modeled and measured 
temperatures) 

Water filled crevasse 

On Greenland, annual filling and 
drainage (substantial water input) 
multi-year persistence of liquid water 
(Catania and Neumann, 2010) 
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