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Overall Project Objective

“ Investigate the sensitivity and feedbacks of the
atmosphere-ocean-cryosphere coupled system, along
with its impact on the climate, ice sheet and sea-level

evolutions.”
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Figure 1: Schematic diagram of a two-way coupling between the atmosphere, ocean, ice sheets
and ice shelves. Information flow is indicated by arrows. We propose to address processes in

blue.



Ice Sheet Surface Parameterization in GCMs

« RCMs for Greenland and Antarctic feature highly detailed snow/firn
physics (RACMO, MAR etc.) and high resolution

 GCMs typically represent snow in a much simplified way: fixed density,
fixed depth, fixed albedo, no refreezing ...
and resolution too coarse to resolve the narrow ablation zones

CESM certainly is an exception, other models start to catch up (e.g.,
LMDZ/IPSL)
- Dynamic ice sheet models need realistic surface temperature and mass

balance as forcing

- Ocean and sea ice components need a better constrained freshwater
input from parameterized ice sheet surface processes



GEOS-5 GCM

Finite volume dynamical core on latlon and cubedsphere grid

Physics parameterization (Molod et al. 2012) includes schemes for
atmospheric convection, large scale precipitation and cloud cover,
longwave and shortwave radiation, turbulence, gravity wave drag

Land surface is a catchment-based hydrologic model (Koster et al., 2000)
coupled to a sophisticated multi-layer snow scheme (Stieglitz et al., 2001)

Previous versions used as part of MERRA (Modern-Era Retrospective
Analysis for Research and Applications, Rienecker, et al., 2011)

Used for both operational forecasts and climate (decadal) runs
Standard resolutions at 2-, 1-, 0.5- and 0.25-deg and 72 levels
Coupled to GFDL MOM4/5 and CICE4
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GEOSlandice_GridComp
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Annual average net surface heat flux

Z—Fleg NEW SNOW

L R IR v

EOGW i .,.. ................. e k

—-100 -80

50°W 40°wW

30°W

—-60 -40

rrmnra ferian e s s me s

rnmnrageran s san et eI

2‘-deg CONTROL 0.5‘—deg NEW SNOW 0.§—deg CONTROL

Ry
A\

_{80°N

. [70°N

75°N

65 °N

50°wW

=20

40°W

30°wW

50°wW

-15 -10

W/m~2

» Surface heat flux bias eliminated

40°wW

60 80

100

30°wW

i B0°N



Near-surface air temperature
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Annual Mean Accumulation
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* GEOSS5 agrees more with the RCM than ice core data
» Peak accumulation in the southeast/northwest margin is only captured in
high-resolution
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GrlS Area in SeaRise grid (5km)
1.771 x10° km?
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Runoff Runoff Accum. Accum. SMB GrIS
(GTlyr) (GTlyr) (GTlyr) (GTlyr) (GTlyr) Area
Model grid | seaRise | Modelgrid | SeaRise SeaRise | (106km?)
Grid(5km) grid (5km) | grid (5km)
GEOS5 460 409 748 629 220 1.993
2-deg
GEOS5 500 334 860 728 394 1.996
0.5-deg
RACMO 248 241 717 706 465 1.711
11km
MAR 178(248) 636(611) 455(359) 1.701
25km
PMM5 232 170 1.691
24km
ERA40 248 324 1.678

5km
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Dynamical Ice Sheet Model (ISM) Coupling With GEQOS
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“Fast Physics” ESMF Landice Component
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Summary

» A multi-layer physically-based snow scheme coupled to the
ice sheet surface improves the surface energy balance and temperature

 GEOS-5 produces a lower SMB than RCMs due to higher ablation;
getting to higher resolutions tend to increase accumulation

* Where GCM resolutions adequately resolve ablation zones, detailed physical
processes (turbulent exchange, albedo, local precip. etc.) are important to
the net SMB

A tiling scheme is planned for coupling to dynamical ice sheet models



Surface Energy Fluxes along K-Transect
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Annual Mean Accumulation Difference
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