

Proudly Operated by Battelle Since 1965

Global testing and sensitivity analyses of VIC hydrologic parameterizations in CLM

Maoyi Huang, Huimin Lei, Zhangshuan Hou, L. Ruby Leung

Pacific Northwest National Laboratory

CESM LMWG meeting, Mesa Lab, Boulder, CO 20 February 2013

Proudly Operated by Battelle Since 1965

Methodology

Model

- CLM4.5 Science Branch Tag: VIC
- VIC hydrology has been implemented into the Tag
- Methodology
 - Three VIC parameters were selected for sensitivity analyses:
 - b, D_{smax}, W_s
 - The uncertainty quantification framework for CLM developed in Hou et al. (2012) were used for a global sensitivity analysis
 - GRDC annual runoff (climatology) were used as the benchmark dataset
 - CLM was run globally at 0.9x1.25 degree using the I2000 case

Pacific Northwest NATIONAL LABORATORY

Merging of CLM4 and VIC

Comparison between runoff parameterizations

Proudly Operated by Battelle Since 1965

CLM4

Physically based

- Assumptions from TOPMODEL:
 - High-resolution topographic data are available;
 - Subsurface flow is topographic driven.
 - A quasi-steady state to approximate saturated zone dynamics;
 - Recharge to ground water is spatially uniform;

Limited assumptions:

Conceptual

land surface, and therefore surface runoff generation, is heterogeneous;

VIC

- Subsurface flow is a nonlinear function of deep-layer water availability
- Calibration of parameters are recommended

These assumptions are invalid, e.g., over flat terrain or arid regions

Pacific Northwest

UQ framework designed for CLM

VIC parameter values from GLDAS

Pacific Northwest

Generating samples of VIC parameters

64 samples for CLM global simulations

Calibration against the GRDC total runoff field (climatology)

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

8

Calibrated VIC parameter values

Seasonal differences in runoff

Simulations outside of the calibration period

MODIS: 112 Pg C/year

CLMVIC: 114 Pg C/year

CLM4.0: 143 Pg C/year

Poster:

Impacts of hydrologic parameterizations on global terrestrial carbon cycle dynamics in the Community Land Model

Summary and future work

- VIC runoff parameterizations have been implemented into the CLM4.5 science branch; Selected VIC parameters were calibrated under a UQ framework against GRDC total runoff field;
- In general, calibration could reduce biases in annual runoff simulations for both the calibration and simulation periods.
- However, the calibration strategy presented here is oversimplified. We will investigated parameter uncertainties, transferability, and UQ strategy separately in the near future;
- Both structural and parameter uncertainties in the runoff generation schemes can lead to large uncertainty in carbon modeling, highlighting the significant interactions among the water, energy, and carbon cycles and the need for improving hydrologic parameterizations in land surface models.

Pacific Nort NATIONAL LABORATORY

- Dr. Justin Sheffield for providing the GLDAS VIC parameter values
- DOE: Investigation of the Magnitudes and Probabilities of Abrupt Climate Transitions (IMPACTS)

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965 14