Carbon Isotopes in the iCESM

Alexandra Jahn

<u>Collaborators:</u> Keith Lindsay, Mike Levy, Esther Brady, Synte Peacock, Bette Otto-Bliesner

NCAR is sponsored by the National Science Foundation The iCESM project is funded by DOE

Carbon Isotopes and their usefulness

Stable isotopes become preferentially concentrated because of differences in their mass: this is called fractionation

 \rightarrow It allows the tracing of pathways/origins of carbon

Fractionation

- Equilibrium Fractionation: The heavier isotope generally preferentially accumulates in the element in which it is bound most strongly
- + Kinetic Fractionation: The lighter isotopes react more readily and become concentrated in the products, and the residual reactants become enriched in the heavy isotopes. Biological proceesses (e.g., photosynthesis) are kinetic reactions

Delta Values

Measured isotope ratios are expressed as delta (δ) values, calculated relative to a known standard.

 $\delta(\) = (R_{sample} - R_{standard})/R_{standard} \times 1000$

where R is the measured isotopic ratio (e.g., ${}^{13}C/{}^{12}C$).

Examples of $\Delta^{14}C$ as ocean tracer

- Δ¹⁴C is used as proxy for the age of water masses, circulation timescales, and to infer past and present ocean water ages
- Bomb Δ¹⁴C is used to infer recent ocean ventilation (like CFCs) and oceanic carbon uptake

Examples of $\delta^{13}C$ as ocean tracer

- δ¹³C is used to infer paleo ocean water masses (e.g., NADW)
- δ¹³C can be used as tracers of carbon cycle processes → e.g., used to diagnose the oceanic uptake of anthropogenic CO₂

Carbon isotopes in POP2

- Abiotic ¹⁴C in DIC in POP2 (solubility pump only)
 → follow OCMIP2 protocol
- 2. Biotic ¹⁴C and ¹³C in POP2 (solubility and biological pump) → base code on ¹³C code from ETH (Gruber et al) for POP1 → Add biotic ¹⁴C

Oceanic abiotic ¹⁴C tracer module

Total surface ocean 1990-98 D¹⁴C

Model

Corals

¹⁴C ages and ideal ages in the model

¹⁴C ages and ideal ages in the model

Adding the biological pump

- Currently there are 7 carbon pools in the ecosystem model (DIC, DOC, small phytoplancton, diatoms, diazotrophs, zooplankton, CaCO₃)
- + Each Carbon isotope adds 7 tracers
 - Currently the ecosystem model has 24 tracers
 - + 14 additional carbon isotopes add a considerable expense (>50% increase in number of tracers)
 - → Carbon isotopes need to be an optional feature

Addition of biotic ¹³C and ¹⁴C to POP2

Future work

- + Finish addition of ¹³C and ¹⁴C and test implementation
 - How large is the difference for ¹⁴C between the abiotic module and the "complete" ¹⁴C module?
- Add tracers for Protactinium (Pa) and Thorium (Th) to the ecosystem model of the CESM as additional tracer for the strength of the overturning circulation
- + Spin-up all tracers for use in the the 1 degree coupled CESM → need fast spin-up technique (Keith Lindsay, NCAR)
- Include tracers in iTraCE simulation for LGM to present
 - Compare simulations to observations, using the new tracers for more direct (but still not "apple to apple") comparisons
 - Investigate how the physical climate parameters from the model (temperature, density, etc) relate to the simulated geochemical tracer fields

Thanks!

Contact: ajahn@ucar.edu

