

Update on CAM and the AMWG: Recent activities and near-term priorities.

by the AMWG

OMWG meeting 21 January 2013

The CAM family

Model	CAM3 CCSM3	CAM4 CCSM4	CAM5 (CAM5.I) CESM1.0 (CESM1.0.3)	CAM5.2 CESMI.I		
Release	Jun 2004	Apr 2010	Jun 2010 (June 2011)	Nov 2012		
PBL	Holtslag-Boville (1993)	Bretherton et al (2009)	Bretherton et al (2009)	Bretherton et al (2009)		
Shallow Convection	Hack (1994)	Hack (1994)	Park et al. (2009)	Park et al. (2009)		
Deep Convection	Zhang-McFarlane (1995)	Neale et al. (2008)	Neale et al. (2008)	Neale et al. (2008)		
Microphysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Morrison-Gettelman (2008)	Morrison-Gettelman (2008)		
Macrophysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Park et al. (2011)	Park et al. (2011)		
Radiation	Collins et al. (2001)	Collins et al. (2001)	lacono et al. (2008)	lacono et al. (2008)		
Aerosols	Bulk Aerosol Model	Bulk Aerosol Model BAM	Modal Aerosol Model Ghan et al. (2011)	Modal Aerosol Model Ghan et al. (2011)		
Dynamics	Spectral	Finite Volume	Finite Volume	Spectral element		

= New parameterization/dynamics

What's in CAM5.2?

- New dynamical core (Spectral Element: SE)
- New topography for CAM-SE

• 6 bug fixes

- Fix for the land scaling of dust
- Fix to wet radius calculation in the modal_aero_wateruptake module.
- Fix for the value for the Obukhov length used in dry deposition calculations.
- Fix in zm_conv to fix some inconsistency in the initialization of moist static energy.
- Fix in uw_shallow for the unreasonable concentration of some species in WACCM.
- Mods in MAM to generalize the method for calculating pH value of cloud water.

=> Very little impact (25-year coupled run at FV-I deg)

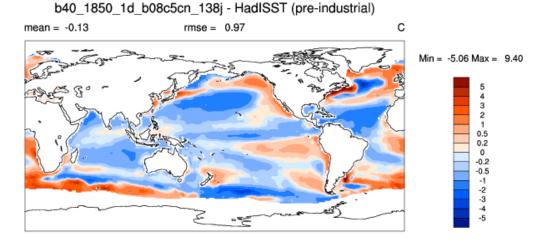
• Tuning for CAM-SE (dust and stratocumulus)

Coupled simulations

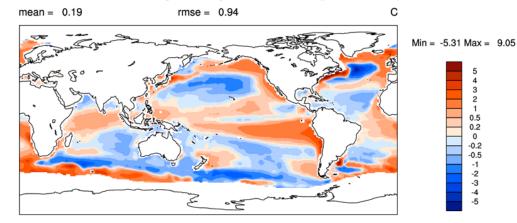
CESM-CAM-FV | degree: 25 years

CESM-CAM-FV 2 degree: 25 years

CESM-CAM-SE ne30 (~I deg): 25 years

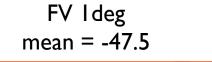

similar to CESMI.0
 ⇒bugfixes have
 small impact

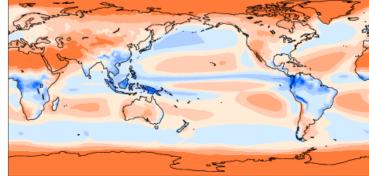
Competitive with FV except for stratocumulus


Temperature biases

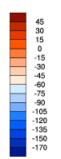
CESMI.0 FV I deg

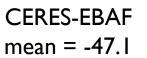
mean = -0.13 RMSE = 0.97

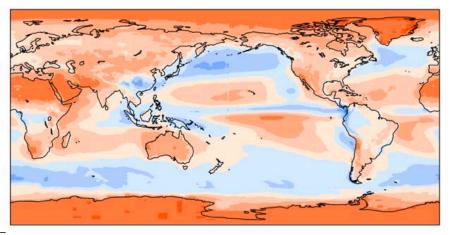

b.e11.B1850C5CN.ne30_g16.tuning.004 - HadISST (pre-industrial)


CESMI.I SE ne30

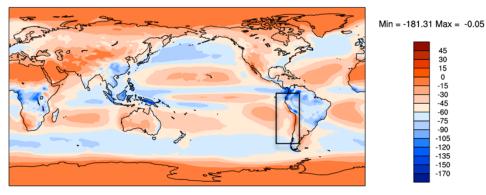
mean = 0.19 RMSE = 0.94


SWCF





Min = -165.90 Max = -0.09


Future development: Change in vertical advection of T

SE ne30 mean = -46.3

ANN

-30 -45 -60 -75 -90 -105 -120 -135

-150 -170

Precipitation

ANN: SPACE-TIME

Reference Grids Used 0.0 0.1 0.2 0.3 **RMSE** Bias 0.∢ CESMI.0 (FV I deg) Bias 0.788 1.483 -/+ <u>о</u>. 1.50 $\nabla \Delta$ >20% CESMI.I (SE ne30) 0.794 1.319 Standardized Deviations (Normalized) $\nabla \Delta$ 10-20% Δ 5-10% ∇ ortelation 0. 1-5% V Δ 1.25 0. 0 0 <1% 1.00 **4** △ 6 ∆ m3_5_fv1.9x2.5 0.9 **2** හ≎4 0.75 850C5CN.ne30 a16.tuning.00 <mark>3</mark>3 △ 1850 1d b08c5cn 138 0.95 0.50 0 - Sea Level Pressure (ERAI) 1 - SW Cloud Forcing (CERES-EBAF) 8 2 - LW Cloud Forcing (CERES-EBAF) 0 3 - Land Rainfall (30N-30S, GPCP) 7 4 - Ocean Rainfall (30N-30S, GPCP) \^ \ \ 5 0 09 99 00 0050 0.25 5 - Land 2-m Temperature (Willmott) 0.99 6 - Pacific Surface Stress (5N-5S,ERS) 7 - Zonal Wind (300mb, ERAI) 8 - Relative Humidity (ERAI) 9 - Temperature (ERAI) 0.00 1.0 0.25 0.50 0.75 REF 1.25 1.50

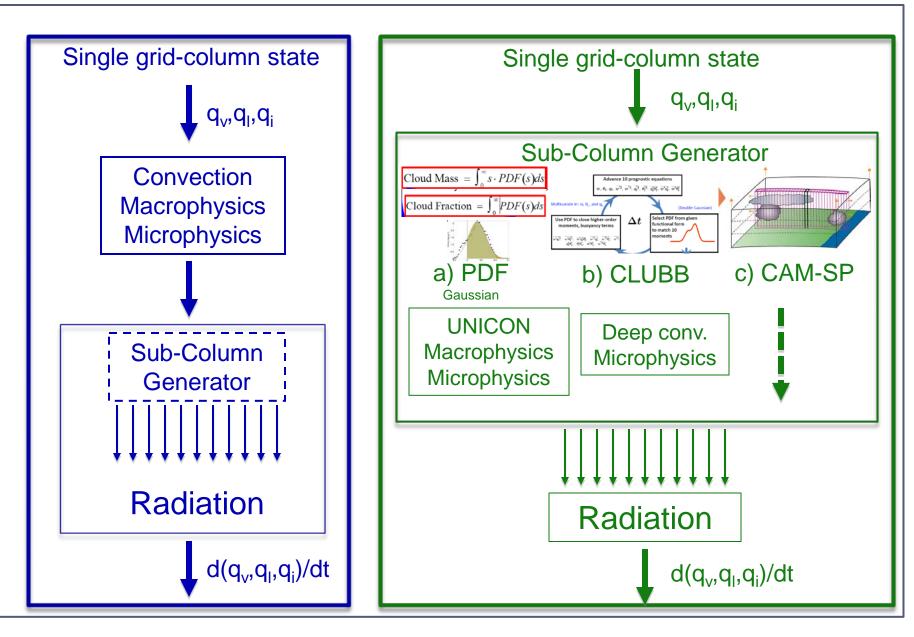
Current/near-term model development

• Dynamics

- Lagrangian vertical transport (all variables)
- Conservative Semi-LAgrangian Multi-tracer (CSLAM) advection
- MPAS dycore and regional mesh refinement in CAM-SE

Resolution

- High resolution runs (0.25 and finer). Horizontal resolution dependence (climate change response).
- Vertical resolution dependence (L30 -> L31, L60)


• Diagnostics

- COSP cloud phase diagnostics
- Refactored diagnostics package
- Address systematic precipitation biases (see next slide)
 - double ITCZ, Asian monsoon, summertime US rainfall
 - CAPT framework, high-resolution, UNICON, ...
- Documentation (CESMwide)
 - Moving from latex file to web-based documentation

Near-term model development (moist physics/radiation)

- Unified Convection (UNICON)
 - unifies treatment deep + shallow
- Cloud Layers Unified By Binormals (CLUBB):
 - third-order turbulence closure centered around an assumed double Gaussian PDF
 - treatment for shallow+PBL+macrophysics
- Consistent PDF-based macrophysics
- SP-CAM: super-parameterization on branch
- Next generation MG microphysics
 - prognostic precipitation, mixed phase ice nucleation and convective microphysics
- Aerosol scheme
 - Prescribed Aerosol (BAM /MAM)
 - MAM4
- Sub-columns infrastructure
 - all schemes see the same sub-columns: consistency among processes

Physics framework in CAM5+

Slide courtesy: Rich Neale

(More grid resolution/scale tolerant)

Timings on Yellowstone for CESM1.0.5

http://www.cesm.ucar.edu/models/cesm1.0/timing_cesm_1_0_5/

NOTE: FV_2° 1850CN pe-hrs/yr=237 T31 pe-hrs/yr=56

FV_2° for Paleo and WACCM

Hechine	Resolution	Compare	Tabel FEX	Cast pe-fea/yr	Thuết yr:Bay	epi p-es	Ind pen.	ice pes	atm per	gic p.e.	acn pei	Version Date	Comment
yelantanı	0.9×1.25_0.9×1.25	FH 02	912	1778.25	8.92	512 512×1 0	SLZ SLZ×L O	912 912x1 0	SLZ SLZ×L O	L 12×1 10	912 912x1 0	000001_0_5_+401 2013.0113	
yelantanı	0.9×L25_gxLv8		578	820.05	14.92	1410 1410×1 0	140 1410×1 1410	L610 L610xL 0	220 220×1 0	L 12×1 10	256 256×L 320	00000 L.O.S./403 2013 D L 18	
yelantanı	0.9×L25_gxLv8	8.10 50 GF 14*	978	717.23	LØ.27	1410 1410×1 0	140 1410×1 1410	L610 L610xL 0	220 220×1 0	L 12×1 10	256 256×L 320	000001_0_5_+401 20120114	
yelantanı	0.9×L25_gxLv8	BLEDOCICN	1008	1795.40	1247	220 220×L 640	20 20×1 20	320 220×1 0	PAD PAD×L D	L 1x1	40 40% L 940	00001_0_5_401 20130115	
yelowstone	0.9×L25_gxLv8	BUSSON	352	431.84	L9.38	1410 1410×1 0	128 128×1 140	L610 L610x:L 0	288 288 x L 0	L 1x1 0	64 64:L 255	ceom (_0_5_r403 2013 0 1 17	
yelantarı	0.9×L25_gxLv8	BUSSICINCHI	352	573.44	1473	1410 1410×1 0	128 128×1 140	L610 L610xL 0	255 2555×L 0	L 1x1	64 64:L 265	cecm1_0_5_r401 2013/0117	
yelanitane	0.9×L25_gxLv8	B20 TRON	322	433.00	LR.SL	L50 L50×L 0	L28 L28×L L40	L610 L610xL 0	255 2555×L 0	L 1x1 0	64 64:L 200	00001_0_5_403 20130117	
yelanitane	0.9×L25_gxLv8	BROMESCH	322	4 0 9.00	L9.85	L50 L50×L 0	128 128×1 140	L500 L510x:L 0	255 2555×L 0	L 1x1 0	64 64:L 268	00001_0_5_403 2013.01.17	
yelanstane	0.P×L25_g×Lv8	101	258	3177	18 L 62	256 256×L 0	256 256×1 0	256 25 č.l 0	256 256×1 0	256 256×L 0	256 25 č×l 0	000001_0_5_v401 2013.0117	
yelanstane	L9:25_L9:25	RH 02	352	-50.00	1873	252 252×L 0	282 282×1 0	352 282xL 0	282 282×1 0	L 1x1 0	352 252×1 0	00001_0_5_v401 2013.0113	
yelowstone	LD:23_LD:23	PWN	912	FZ 44.85		512 512×1 0	SLZ SLZ×L O	512 512x1 0	SLZ SLZ×L O	512 512×1 0	512 512×1 0	00001_0_5_r403 2013.01.17	
yellowstone	LR×2.5_g× lvđ	BLESDESCH	384	5L7. LL	17.82	240 240×1	64 64×L	240 240x1	220 220×1	L Ext	64 64::L	00001_0_5_v401 2012-0113	

Timings on Yellowstone for CESM1.1

http://www.cesm.ucar.edu/models/cesm1.1/timing/

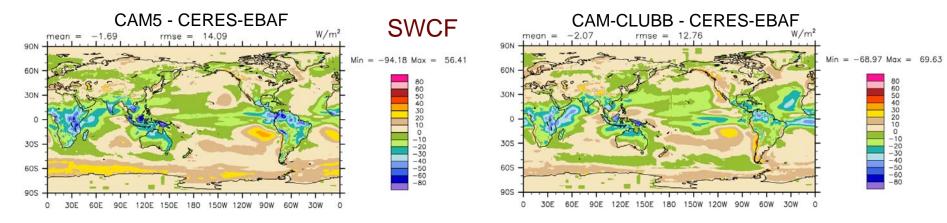
NOTE: FV_1° 1850C5CN pe-hrs/yr=1650 ne30 pe-hrs/yr=2657

Spectral core no longer supported SCIENTIFICALLY (will be functionally)

Ι.															
	Hachine	Recolution	Compute	Tobal Pitta	Cost pe-Ins/yr	Thruffut yrs/day	api pan	ind per	naf pez	los per	atm pes	gic per	aan paa	Version Date	Comment
	ydanstane	0.0x1.25_g×lvð	al moarty	780	en.20	UL OP	800 300:×2 0	240 120:2 0	240 120:2 0	260 1.60:×2 1.20	400 200-2 0	2 L×2 0	180 180×1 200	cami_i_0_r406 20120115	
	ydanstana	0.0xt.25_gxtvð	BUSICE ON	ID 24	184828	LEDI	978 978×L 0	228 238% 0	אב ג גאפגג ס	640 640×L 226	978 97&:L 0	נ 1×1 0	48 48×L 978	ceam L, 2, aiph a01.6 2012, 12.15	
	ydanstane	0.0x1.25_gxlvð	BUSICEON	מכיש	L9 19 28	15.3 7	1800 900:×2 0	400 200-2 0	400 200-2 0	1200 800:×2 200	1800 1700-2 0	2 L×2 0	120 80-2 900	ceam L, 2, aiph a01 a 20 12 0 L 12	
	ydanstane	0.0x1.25_gxlvð	BLEEDCN	W24	626.24	a a a	928 928×L 0	265 256::L 0	265 256::L 0	640 640×L 286	928 926:L 0	נ 1×1	98 98:L 928	ceam L, 2, aiph a01.b 2012, 12, 17	
	yelowstone	0.0xt.25_gxtvð	BLEEDCN	720	4 23.87	2L84	600 200×2 0	L60 90:2 0	L60 90x2 0	-620 210×2 90	400 200-2 0	2 L×2 0	120 80-2 200	ceam L, L, L, aigh a0 le 20 L2 0 L L4	
	ydanstane	nejOnp4_g×lvð	a Loogany	1280	0 18 P 8	2 1.21	BPå BPå×L D	258 258:L 0	258 258:L 0	640 640×L 256	898 898:L 0	L L×L 0	384 364×L 696	ceam L, 2, aiph a01.5 2012, 12.13	
	yelowstone	nejOnp4_g×lvð	BLESDCS ON	21-6	96.7262	LL 30	11784 11784::L 0	9 LZ 9L 2xL 0	9 LZ 9L 2xL 0	L 472 L472×L SL2	L984 L984×L 0	נ 1×1 0	84 84:L 1964	ceam L, 2, aiph a015 2012, 12 15	
	yelowstone	nejOnp4_g×lvð	BUSICE ON	P 28	21 33 .40	ננש	BPA BPA×L D	256 25 č.: 0	256 256×L 0	640 640×L 256	894 89 č.:L 0	נ 1×1 0	32 32×L 898	ceam L_2_eipheOlb 2012,12,15	
	yelowstone	Tđ2 <u>o</u> xluđ	¢	120	48.62	JLSP	120 60:2 0	L20 60%2 0	L20 60x2 0	120 80:2 0	L20 60x2 0	120 80:2 0	120 80:2 0	ceam L, L, L, aiphail Io 2012 01, 19	
	ydantan	T62 <u>9</u> ×lvð	c	240	81.38	40.00	240 L20:×2 0	240 120:2 0	240 120:2 0	240 L20%2 0	240 120:2 0	240 1.20:×2 0	240 1.20×2 0	ceam L.L.Laiphail is 20 LLOL IS	

 •• 2012 UCAR | Frivacy Failey | Terms of Lise | Contact Lis | Spansared by NSF | Managed by UCAR | Webmaster

.....


The National Center for Atmospheric Research is sponsored by the National Eclence Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Eclence Foundation.

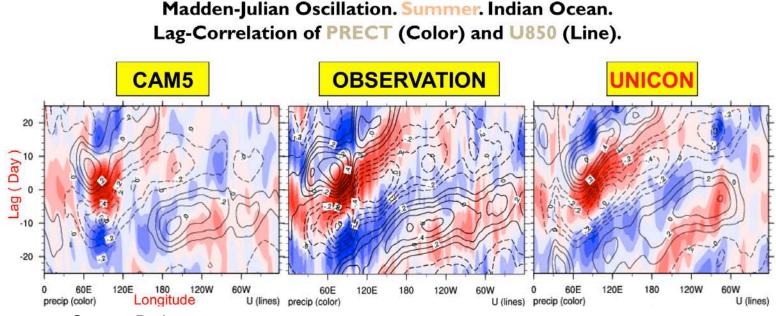
Thanks

Extra slides

CAM-CLUBB

- CLUBB = Cloud Layers Unified by Bi-normals (third-order turbulence closure centered around an assumed double Gaussian PDF)
- Prognostic moments of the PDF: allows testing of physics 'across scales' and a way to drive sub-columns.
- CLUBB unifies treatment of shallow convection, PBL, and cloud macrophysics parameterizations
- CAM-CLUBB is a developmental release in CAM5.2
- Simulations currently equal metrics for CAM5. Some aspects are better, some are slightly worse (e.g.: SW Cloud Radiative Effects below). Still testing and exploring. Computational cost similar to CAM5.2
- Exciting new foundation for further experimentation

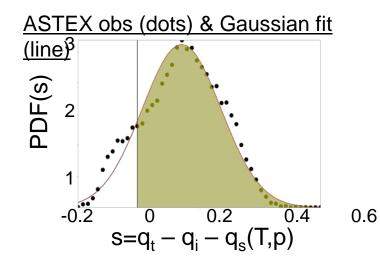
Slide courtesy: Peter Bogenschutz, Andrew Gettelman, Hugh Morrison, Vincent Larson, and Cheryl Craig


UNICON

• UNICON is a sub-grid vertical transport scheme by non-local asymmetric turbulent eddies and a scale-aware parameterization well harmonized with CAM5 moist turbulence scheme without double-counted transport.

• UNICON simulates all shallow-deep, dry-moist, and forced-free convections within a single framework in a seamless, consistent and unified way.

• UNICON simulates MJO and diurnal cycle of precipitation with improved climatologies.


• UNICON knows how to turn on-and-off MJO and diurnal cycle of precipitation. The key process controlling MJO and diurnal cycle of precip is the feedback among convective updraft, convective downdraft and meso-scale flows.

Slide courtesy: Sungsu Park

PDF-Based Stratiform Cloud Physics

 In stratiform regions, subgrid moisture variability typically follows a Gaussian

 Consistent cloud fraction and mass can be computed via:

Cloud Fraction =
$$\int_{0}^{\infty} PDF(s)ds$$

Cloud Mass = $\int_{0}^{\infty} s \cdot PDF(s)ds$

Led by Peter Caldwell (LLNL). Funded by DOE "Polar Project" with support from Teixeira CPT

Microphysics Development: MG2

- Refactored code (Model independent code)
- Prognostic precipitation
 - Why? Improvements in process rates (like accretion) that impact cloud lifetime
- Activation fix from Caldwell
- Hail/Graupel (mixed) phase hydrometeors
- Use in convective clouds (strong updraft)
 - Probably means additional transport code
- Resulting MG2 code will 'unify' scheme with Morrison et al 2005 WRF code: maintain a single code for WRF and CESM

Slide courtesy: Andrew Gettelman

Sub-columns

- Sub-columns are a key conceptual method for physics 'across scales': as scale gets smaller, sources of variance decrease, and PDF narrows
- We prognose a PDF ('macrophysics')
- Total water and vertical velocity PDFs critical
- Sample the PDF generate consistent sub-columns ('sub-column generator')
- Use sub-columns for determining microphysics and radiation
- Some doubts remain: need to test the ideas
- Infrastructure also used for SP-CESM (embedded cloud model)

Slide courtesy: Andrew Gettelman