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Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

@ Atmospheric general circulation models improved with
wave drag (e.g., Palmer et al., 1986)

@ J ample observational evidence that vertical diffusivity is
enhanced in regions with rough topography (e.g., Polzin et
al., 1997; ...; St. Laurent et al., 2012)

@ Wave drag boosts vertical diffusivity (e.g., St. Laurent et
al., 2002) and improves all considered tidal constituent
amplitudes (e.g., Jayne and St. Laurent, 2001) in
barotropic tidal models

@ Offline estimates suggest wave drag dissipates energy at
0.2 — 0.49 TW in abyssal hill regions (e.g., Nikurashin and
Ferrari, 2011; Scott et al., 2011)




Introduction
[e]e] le}

Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

@ How much wave drag energy dissipation is there in
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Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

@ How much wave drag energy dissipation is there in
non-abyssal hill regions?

@ How does wave drag impact the abyssal currents,
stratification, and in turn the energy dissipation rates?

@ Are general circulation ocean models forced only by winds
and air-sea fluxes improved when wave drag is included?

v
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Motivation and what wave drag is

What is topographic wave drag and how do parameterizations
work? Bell (1975) versus Garner (2005) [Froude number= U/NH]

@ Garner (2005) - allows
for topographic
blocking, but does not
depend on Coriolis

@ Bell (1975) - does not

0 allow for topographic
O O blocking, but does
depend on Coriolis
@ Both schemes -
jJ depend on

and underlying
topographic features

Minimum Froude Maximum
number needed Froude number|
to go over limit

— () () ] O\ stratification, velocity,
S | < —
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The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM)

Resolution
@ 32 hybrid layers
@ 1/129 1/25° resolutions

@ Air-sea fluxes - monthly mean ECMWF Re-Analysis
(ERA-40; Kallberg et al., 2004)

@ Winds - monthly mean ERA-40 supplemented with
6-hourly 2003 fields of the Navy Operational Global
Atmospheric Prediction System (NOGAPS; Rosmond et
al., 2002)
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Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

@ Horizontal viscosity - (~ 102 — 103 m? s~ 1) includes the
maximum of a Laplacian and a Smagorinsky (1993)
parameterization with an additional biharmonic term
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The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

@ Horizontal viscosity - (~ 102 — 103 m? s~ 1) includes the
maximum of a Laplacian and a Smagorinsky (1993)
parameterization with an additional biharmonic term

@ Vertical viscosity - (~ 10~ — 103 m? s~ ) multiply the
vertical diffusivities from KPP (Large et al., 1994) by a
Prandtl number (ten)

@ Bottom drag - quadratic in the momentum equations with
coefficient, Cy = 0.0025 (Taylor, 1919; ...; Arbic et al.,
2009)

@ Wave drag - Garner (2005) scheme is used with
parameters from Goff and Arbic (2010) and Goff (2010)
where there are abyssal hills; a Generalized Additive Model
(Wood, 2006) is used to predict the parameters elsewhere
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The model and observations for comparison
Diagnostics informed by observations and compared with model
output

Current meters (Global Multi-Archive Current Meter
Database;
http://stockage.univ-brest.fr/Scott/GMACMD/updates.html)

@ Mean vertical structure of kinetic energy
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The model and observations for comparison
Diagnostics informed by observations and compared with model
output

Current meters (Global Multi-Archive Current Meter
Database;
http://stockage.univ-brest.fr/Scott/GMACMD/updates.html)

@ Mean vertical structure of kinetic energy

Satellite altimetry (Archiving, Validation and Interpretation

of Satellite Oceanographic;
http://www.aviso.oceanobs.com/es/data/index.html)

@ Surface kinetic energy

@ Eddy length scales (inverse first centroid of kinetic energy
power spectrum)

@ Sea surface height variance
@ Intensified jet positions (via Kelly et al., 2007)
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Mechanical energy budget from the continuity and momentum equations

Continuity and momentum equations

op = , -
op . — 1
5; TV (o) =0 (1)
ol . = 1= A
E—i—(u-V)u—l—;Vp—i—kau—i—gk: (2)
ds Twind Cd =~ |rdrag‘ .
p Hs b’HBDHBD|U|U_5b’HWD HWDu
0 0 .

_GZ(VZEU) — ﬁ . (I/hgﬁa + Uh,4ﬁv20)



Energy budget wave drag estimates: offline and inline
oe

Mechanical energy budget from the continuity and momentum equations

Continuity and momentum equations

dp = -
op ) — 1
5; TV (o) =0 (1)
ol . = 1= L
E—i—(u-V)u—l—;Vp—i—kau—i—gk: (2)
ds Twind Cd =~ |Farag| ~
p Hs b’HBDHBD|U|U_5b’HWD HWDu
0 0. =

_E(VZEU) -V (I/hgﬁa + Uh,4ﬁv20)

wind 4+ buoyancy = (3)
bottom drag + wave drag +

vertical viscosity +horizontal viscosity.
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@ Offline estimates of wave drag
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Offline estimates of wave drag

Bell (1975) versus Garner (2005)

Using the same bottom velocity fields from a 1/12° HYCOM
simulation without wave drag and two different stratification
fields: one from the World Ocean Atlas (WOA) and one from
the same HYCOM simulation (HYCOM). ..

a) (Garner scheme, N from WOA) b) (Garner scheme N from HYCOM)

100E 160W 60W 100E 160W 60W
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Offline estimates of wave drag

Global Integrals of Offline Wave Drag Estimates in TW= 10"W

wave drag scheme || WOA || HYCOM
Garner (2005) 0.45 0.57
Bell (1975) 0.47 0.52
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e Energy budget wave drag estimates: offline and inline

@ Inline estimates of wave drag and other energy budget
terms
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Inline estimates of wave drag and other energy budget terms

Bottom drag and wave drag

Averaging the energy dissipation rate per unit area every two
minute baroclinic time step in a 1/12° simulation with wave
drag...

a) Bottom drag [log, (W mfz)]
——— A

50:

= i | g
150W 100W 50W 0 50E 100E 150E
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Inline estimates of wave drag and other energy budget terms

Can we just substitute wave drag with a boost in bottom drag?

See Waterman et al. (in press, JPO) for observational evidence
that wave drag is mostly a non-local dissipative process, while
bottom drag (see, e.g., Sen et al., 2008) is a local dissipative

process; also. ..

Wave drag vs Bottom drag [W m’z]
0.0351

0.031

0.025

o
Q
o

Bottom drag

0.015¢

. . .
003 004 005 006 007 008
Wave drag
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Inline estimates of wave drag and other energy budget terms

Vertical viscosity and horizontal viscosity

Depth [m]

= . 2
d horizontal viscosity d) Zonally averaged horizontal viscosity
a¥ =

1000
E == 85
‘= 2000 —
B i
| © - 9
A 3000
95
4000
6 -10
100W 0 100E 50 0 -50

Latitude [°N]
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Inline estimates of wave drag and other energy budget terms

Wind power inputs and thermodynamic work

a) Wind input (geostrophic flow)[logm(Wm 4 b) Wind input (near-inertial flow)

50N

50S | -

SON

50S
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Inline estimates of wave drag and other energy budget terms

Global Integrals of Energy Budget Terms in TW= 10">W

Res. | WD? || Wind | Buoy || BD | WD || VV HV
1/12° no 0.87 | 0.066 || 0.31 | N/A || 0.29 || 0.29

| 1/12° || yes [ 0.87 | 0.066 || 0.14 | 0.40 [ 0.28 || 0.26 |
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What happens to the velocity and stratification fields?
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@ What happens to the velocity and stratification fields?
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What happens to the velocity and stratification fields?

Bottom kinetic energy and stratification differences (with and
without wave drag)

a) Bottom N W|thout wave drag flog, (s " b) Bottom N WIth wave drag

100W 0 100E 100W 0 100E
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What happens to the velocity and stratification fields?

Zonally averaged kinetic energy and stratification differences (with
and without wave drag)

a) Zonally averaged N without wave drag [Iog10(s'1)] b) Zonally averaged N difference (without-with wave drag)
[ e S S

0 e 100
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»E
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I
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4000 ‘ i 1
5 ; -100
c) Zonally averaged KE without wave dr. s d) Zonally averaged KE difference (without-with wave drag)
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What happens to the velocity and stratification fields?

Vertical and horizontal viscosity differences (with and without
wave drag)

th wave drag) b) Zonall averaged vertica viscosty iference (wihoutvith wave drag)

) Depthintegrated vertical viscosty difference (withoutv
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Comparison with satellite altimetry measurements

Surface kinetic e
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Comparison with satellite altimetry measurements

Eddy length scales
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Comparison with satellite altimetry measurements

Sea surface height variance

a) SSH variance [mz] 1/12th HYCOM without wave drag b) SSH variance [mz] 1125th HYCOM without wave drag

A 2 » e —
50N
0 0.05
v ; i 0.04
508 . 5 v

0.03

¢) SSH variance [mz] 1112th HYCOM with wave drag d) SSH variance [mz] informed by AVISO
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Comparison with satellite altimetry measurements

Intensified jet positions

Observations

1/12° HYCOM without wave drag
1/12° HYCOM with wave drag
1/25° HYCOM without wave drag

a) Gulf Stream Extension jet position d) Malvinas Current jet position
z @
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240 m B
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T w
- 20 = -50
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b) Kuroshio Extension jet position e) Agulhas Current jet position
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c) Antarctic Circumpolar Current jet position
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Comparison with current meter measurements

Average vertical kinetic energy

Observations

1/12° HYCOM without wave drag
1/12° HYCOM with wave drag
1/25° HYCOM without wave drag

Kinetic energy in HYCOM and from filtered observations
0 T T
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2000 -

3000 - /
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Taylor (2001) diagrams of all five diagnostics
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e Model evaluation

@ Taylor (2001) diagrams of all five diagnostics
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Taylor (2001) diagrams of all five diagnostics

Does wave drag ever make the model simulations in worse
agreement with diagnostics informed by observations?

Observations

1/12° HYCOM without wave drag
1/12° HYCOM with wave drag
1,/25° HYCOM without wave drag

a) Kinetic energy profiles Taylor diagram b) Intensified jet positions Taylor diagram ) SSH variance Taylor diagram

|
: d L] J
d) Surface kinetic energy Taylor diagra e) Eddy length scales Taylor diagram




Summary

Summary

@ Dissipation in non-abyssal hill regions~dissipation in
abyssal hill regions

@ Dissipation inlinex %dissipation offline (due to active
feedback on velocities and stratification)

@ These roughly cancel so that what Scott et al. (2011)
found=~ our inline estimates

@ Wave drag dissipates energy at a larger rate than any
other dissipative term

@ Wave drag cannot be substituted for by boosting bottom
drag
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Summary

@ Simulation without wave drag: dissipation~ 95% inputs
(likely due to non-conservation of a tracer quantity [Griffies
et al., 2000; Leclair and Madec, 2009] and the ocean is not
in steady-state)

@ Simulation with wave drag: dissipation~ 115% inputs (the
model ocean is not in steady-state)



Summary

Summary

@ Simulation without wave drag: dissipation~ 95% inputs
(likely due to non-conservation of a tracer quantity [Griffies
et al., 2000; Leclair and Madec, 2009] and the ocean is not
in steady-state)

@ Simulation with wave drag: dissipation~ 115% inputs (the
model ocean is not in steady-state)

@ Both the addition of a wave drag parameterization and
going to a higher resolution (1/12° to 1/25° HYCOM)
improves the model and never makes the model worse



Summary

Why I’'m here

@ Let’s do the same with CESM’s ocean component (POP)!

@ There are several minor details with putting this into a
model like: 1) the range of relevant wavenumbers for the
internal waves to not be evanescent, 2) estimating the
parameters in non-abyssal hill regions an alternative way,
3) relaxing the assumption of small off-diagonal
components to the topographic information tensor, and 4)
using a depth-dependent momentum deposition procedure
that Garner (2005) used (rather than using the bottom 500
meters)



How N2 in 1/10° POP compares with Argo data

a) N? at 500 meters depm (Argo) [Iogm(s 2)

) N? at 800 meters depth (Argo) [Iogw(s' )

b) N° at 500 meters deptn (POF‘) [Iog‘o(s'z)]

W eo‘w ¢ eo“E 12
d) N at 800 meters depth (POP) flog, o(s2)]

€) N? at 1100 meters depth (Argo) [log, ,(s2)]
10!

180° mo"w 120‘w [

) N at 1100 meters depth (POP) [log, o(s™)]

) N? at 1400 meters depth (Argo) [log, ,(s2)]
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Spatially varying input parameters for the Garner (2005) scheme

oz J dkall|P(k, 1) & 2FfMMPka

{Tm T1,2]
Toq Top|’

PN wah/ﬁ dkdl|P(k, I)| £

xo(x,y) = —ggl/dx % /dk' exp[/k’ X] (

B is set to be proportional to the magnitudes of the spatial
gradients in the bathymetry



Spatially varying input parameter plots for the Garner (2005)
scheme

100W 0 100E 100W 0 100E



Implementation of wave drag in the momentum equations

7 Uy

ldrag = — =5
plUg|?

where Uy is the velocity field averaged over the bottom 500 meters,

- Dp  Dnp, .
7= (o) = (2 + 22)(Tly),
24y — 24y —
D* = gy PV hw[4(27 — N Hmad* — Hoy' )
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Dp = a n PVE 2y — e Hcl/‘p — Hiin 2+ 8 Himax - Hcl/‘p
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Do — a iy P 3 2y — € Hmax ™" = Hppy 113 Hmax — Hap
np = a1ny NL.(1 v Py 1 — = Merit . _ ’
r(1+ B8) Hylx — Hor +v—€ N—e—8
and . .
v Ug - (Ttg)
-

\/(UdT1,1 +VaT2,1)2 + (UgTi,2 + Vg T2 2)?




Implementation of ry,4ly instead of 7/p

30°s

60°s (.
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Curls of drags and wind stress

a) Bottom drag curl [Iogm(srz)] b) Wave drag curl [Iogm(srz)]

50N 50N
-11

0 0
-12
505 505 3

100w 0 100E 100w 0 100E

c) Wind stress curl [Iogm(s'z)]




Relationships between curls of drags and wind stress

e
=) Curls of hottom crag, wawe drag 1og) (s ~)) o) Curls of bottom drag, wind stress
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) Curls of wave drag, wind stress

Curl of wire stress

-20 -15 rEE) -5
Curl of wave drag



Is the model spun-up?

Depth-integrated area-averaged kinetic energy [kg 5]
20000 T T T T T T T
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Is the model spun-up (cont...)?

a) Center of gravity without wave drag [fraction of water column]
1

b) Center of gravity difference (without-with wave drag) [%]
5
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Is the model spun-up (cont...)?

Depth of center of mass of ocean [m]
2548 T T T T T T
e \\/ithout wave dra
= \\ith wave drag
2546 B

2544 ,

2542 ]

2540 9

Center of mass depth [m]
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