A Topographic Internal Lee Wave Drag Parameterization: Evaluation of an Eddying Global Ocean Model and Its Energy Budget

David Trossman¹ Brian Arbic¹ Steve Garner² John Goff³ Steven Jayne⁴ E. Joseph Metzger⁵ Alan Wallcraft⁵

¹University of Michigan-Ann Arbor, Earth and Environmental Sciences Dept
 ²NOAA/Geophysical Fluid Dynamics Laboratory
 ³University of Texas-Austin, Institute for Geophysics
 ⁴Woods Hole Oceanographic Institution, Physical Oceanography Department
 ⁵Naval Research Laboratory-Stennis Space Center, Oceanography Division

OMWG Meeting, 2013

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Introduction • 0000000	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary	
Motivation and what wave drag is				

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- 2 Energy budget wave drag estimates: offline and inline
 - Mechanical energy budget from the continuity and momentum equations
 - Offline estimates of wave drag
 - Inline estimates of wave drag and other energy budget terms
 - What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

• Atmospheric general circulation models improved with wave drag (e.g., Palmer et al., 1986)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., Palmer et al., 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., Polzin et al., 1997; ...; St. Laurent et al., 2012)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., Palmer et al., 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., Polzin et al., 1997; ...; St. Laurent et al., 2012)
- Wave drag boosts vertical diffusivity (e.g., St. Laurent et al., 2002) and improves all considered tidal constituent amplitudes (e.g., Jayne and St. Laurent, 2001) in barotropic tidal models

Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., Palmer et al., 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., Polzin et al., 1997; ...; St. Laurent et al., 2012)
- Wave drag boosts vertical diffusivity (e.g., St. Laurent et al., 2002) and improves all considered tidal constituent amplitudes (e.g., Jayne and St. Laurent, 2001) in barotropic tidal models
- Offline estimates suggest wave drag dissipates energy at 0.2 – 0.49 TW in abyssal hill regions (e.g., Nikurashin and Ferrari, 2011; Scott et al., 2011)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

• How much wave drag energy dissipation is there in non-abyssal hill regions?

Energy budget wave drag estimates: offline and inline

Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

- How much wave drag energy dissipation is there in non-abyssal hill regions?
- How does wave drag impact the abyssal currents, stratification, and in turn the energy dissipation rates?

Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

- How much wave drag energy dissipation is there in non-abyssal hill regions?
- How does wave drag impact the abyssal currents, stratification, and in turn the energy dissipation rates?
- Are general circulation ocean models forced only by winds and air-sea fluxes improved when wave drag is included?

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Motivation and what wave drag is

What is topographic wave drag and how do parameterizations work? Bell (1975) versus Garner (2005) [Froude number= U/NH]

- Garner (2005) allows for topographic blocking, but does not depend on Coriolis
- Bell (1975) does not allow for topographic blocking, but does depend on Coriolis
 - Both schemes depend on stratification, velocity, and underlying topographic features

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

The model and observations for comparison

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- Energy budget wave drag estimates: offline and inline
 - Mechanical energy budget from the continuity and momentum equations
 - Offline estimates of wave drag
 - Inline estimates of wave drag and other energy budget terms
 - What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM)

Resolution

- 32 hybrid layers
- 1/12°, 1/25° resolutions

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM)

Resolution

- 32 hybrid layers
- 1/12°, 1/25° resolutions

Inputs

 Air-sea fluxes - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM)

Resolution

- 32 hybrid layers
- 1/12°, 1/25° resolutions

Inputs

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004)
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; Rosmond et al., 2002)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

Dissipators

• Horizontal viscosity - ($\sim 10^2 - 10^3 \text{ m}^2 \text{ s}^{-1}$) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term

Energy budget wave drag estimates: offline and inline

Model evaluation

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

Dissipators

- Horizontal viscosity $(\sim 10^2 10^3 \text{ m}^2 \text{ s}^{-1})$ includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term
- Vertical viscosity (~ 10⁻⁴ 10⁻³ m² s⁻¹) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

Dissipators

- Horizontal viscosity ($\sim 10^2 10^3 \text{ m}^2 \text{ s}^{-1}$) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term
- Vertical viscosity ($\sim 10^{-4} 10^{-3} \text{ m}^2 \text{ s}^{-1}$) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)
- **Bottom drag** quadratic in the momentum equations with coefficient, $C_d = 0.0025$ (Taylor, 1919; ...; Arbic et al., 2009)

The model and observations for comparison

Our model: HYbrid Coordinate Ocean Model (HYCOM) (contd...)

Dissipators

- Horizontal viscosity $(\sim 10^2 10^3 \text{ m}^2 \text{ s}^{-1})$ includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term
- Vertical viscosity (~ 10⁻⁴ 10⁻³ m² s⁻¹) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)
- **Bottom drag** quadratic in the momentum equations with coefficient, $C_d = 0.0025$ (Taylor, 1919; ...; Arbic et al., 2009)
- Wave drag Garner (2005) scheme is used with parameters from Goff and Arbic (2010) and Goff (2010) where there are abyssal hills; a Generalized Additive Model (Wood, 2006) is used to predict the parameters elsewhere

Energy budget wave drag estimates: offline and inline

Model evaluation

The model and observations for comparison

Diagnostics informed by observations and compared with model output

Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/scott/GMACMD/updates.html)

Mean vertical structure of kinetic energy

Energy budget wave drag estimates: offline and inline

Model evaluation

The model and observations for comparison

Diagnostics informed by observations and compared with model output

Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/scott/GMACMD/updates.html)

Mean vertical structure of kinetic energy

Satellite altimetry (Archiving, Validation and Interpretation of Satellite Oceanographic; http://www.aviso.oceanobs.com/es/data/index.html)

- Surface kinetic energy
- Eddy length scales (inverse first centroid of kinetic energy power spectrum)
- Sea surface height variance
- Intensified jet positions (via Kelly et al., 2007)

Introduction	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary
Mechanical energy	budget from the continuity and momentum equations		
Outline			

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Continuit	y and momentum equations		
Mechanical energy	budget from the continuity and momentum equations		
Introduction	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} + \frac{1}{\rho}\vec{\nabla}\rho + f\hat{k} \times \vec{u} + g\hat{k} =$$
(2)

$$\frac{\delta_{s}}{\rho} \frac{\vec{\tau}_{wind}}{H_{s}} - \delta_{b,H_{BD}} \frac{C_{d}}{H_{BD}} |\vec{u}|\vec{u} - \delta_{b,H_{WD}} \frac{|r_{drag}|}{H_{WD}} \vec{u} \\ - \frac{\partial}{\partial z} (\nu_{z} \frac{\partial}{\partial z} \vec{u}) - \vec{\nabla} \cdot (\nu_{h,2} \vec{\nabla} \vec{u} + \nu_{h,4} \vec{\nabla} \nabla^{2} \vec{u})$$

Continuit	y and momentum equations		
Mechanical energy	budget from the continuity and momentum equations		
Introduction	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} + \frac{1}{\rho}\vec{\nabla}\rho + f\hat{k} \times \vec{u} + g\hat{k} =$$
(2)

$$\frac{\delta_{s}}{\rho} \frac{\vec{\tau}_{wind}}{H_{s}} - \delta_{b,H_{BD}} \frac{C_{d}}{H_{BD}} |\vec{u}|\vec{u} - \delta_{b,H_{WD}} \frac{|r_{drag}|}{H_{WD}} \vec{u} \\ - \frac{\partial}{\partial z} (\nu_{z} \frac{\partial}{\partial z} \vec{u}) - \vec{\nabla} \cdot (\nu_{h,2} \vec{\nabla} \vec{u} + \nu_{h,4} \vec{\nabla} \nabla^{2} \vec{u})$$

wind + buoyancy = (3)

bottom drag + wave drag +

vertical viscosity + horizontal viscosity.

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Offline estimates of wave drag

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

 Mechanical energy budget from the continuity and momentum equations

• Offline estimates of wave drag

- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Offline estimates of wave drag

Bell (1975) versus Garner (2005)

Using the same bottom velocity fields from a 1/12^o HYCOM simulation without wave drag and two different stratification fields: one from the World Ocean Atlas (WOA) and one from the same HYCOM simulation (HYCOM)...

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Offline estimates of wave drag

Global Integrals of Offline Wave Drag Estimates in TW= 10¹²W

wave drag scheme	WOA	HYCOM
Garner (2005)	0.45	0.57
Bell (1975)	0.47	0.52

Introduction	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary
Inline estimates of wave	e drag and other energy budget terms		
Outline			

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Bottom drag and wave drag				
Inline estimates of w	ave drag and other energy budget terms			
Introduction	Energy budget wave drag estimates: offline and inline	Model evaluation	Summary	

Averaging the energy dissipation rate per unit area every two minute baroclinic time step in a $1/12^{\circ}$ simulation with wave drag...

Inline estimates of wave drag and other energy budget terms

Can we just substitute wave drag with a boost in bottom drag?

See Waterman et al. (in press, JPO) for observational evidence that wave drag is mostly a non-local dissipative process, while bottom drag (see, e.g., Sen et al., 2008) is a local dissipative process; also...

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Inline estimates of wave drag and other energy budget terms

Vertical viscosity and horizontal viscosity

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Inline estimates of wave drag and other energy budget terms

Wind power inputs and thermodynamic work

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Inline estimates of wave drag and other energy budget terms

Global Integrals of Energy Budget Terms in TW = 10¹²W

Res.	WD?	Wind	Buoy	BD	WD	VV	HV
1/12 ⁰	no	0.87	0.066	0.31	N/A	0.29	0.29
1/12 ⁰	yes	0.87	0.066	0.14	0.40	0.28	0.26

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

What happens to the velocity and stratification fields?

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

What happens to the velocity and stratification fields?

Bottom kinetic energy and stratification differences (with and without wave drag)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

What happens to the velocity and stratification fields?

Zonally averaged kinetic energy and stratification differences (with and without wave drag)

Introduction Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

What happens to the velocity and stratification fields?

Vertical and horizontal viscosity differences (with and without wave drag)

a) Depth-integrated vertical viscosity difference (without-with wave drag) b) Zonally averaged vertical viscosity difference (without-with wave drag)

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with satellite altimetry measurements

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with satellite altimetry measurements

Surface kinetic energy

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with satellite altimetry measurements

Eddy length scales

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with satellite altimetry measurements

Sea surface height variance

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with satellite altimetry measurements

Intensified jet positions

Observations 1/12° HYCOM without wave drag 1/12° HYCOM with wave drag

1/25° HYCOM without wave drag

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Comparison with current meter measurements

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Comparison with current meter measurements

Average vertical kinetic energy

Observations 1/12° HYCOM without wave drag 1/12° HYCOM with wave drag 1/25° HYCOM without wave drag

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Taylor (2001) diagrams of all five diagnostics

Outline

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

2 Energy budget wave drag estimates: offline and inline

- Mechanical energy budget from the continuity and momentum equations
- Offline estimates of wave drag
- Inline estimates of wave drag and other energy budget terms
- What happens to the velocity and stratification fields?

3 Model evaluation

- Comparison with satellite altimetry measurements
- Comparison with current meter measurements
- Taylor (2001) diagrams of all five diagnostics

Energy budget wave drag estimates: offline and inline

Model evaluation

Summary

Taylor (2001) diagrams of all five diagnostics

Does wave drag ever make the model simulations in worse agreement with diagnostics informed by observations?

Observations

- 1/12° HYCOM without wave drag
- 1/12° HYCOM with wave drag
- 1/25° HYCOM without wave drag

Summary

- Dissipation in non-abyssal hill regions≈dissipation in abyssal hill regions
- Dissipation inline≈ ¹/₂dissipation offline (due to active feedback on velocities and stratification)
- These roughly cancel so that what Scott et al. (2011) found \approx our inline estimates
- Wave drag dissipates energy at a larger rate than any other dissipative term
- Wave drag cannot be substituted for by boosting bottom drag

Summary

- Simulation without wave drag: dissipation≈ 95% inputs (likely due to non-conservation of a tracer quantity [Griffies et al., 2000; Leclair and Madec, 2009] and the ocean is not in steady-state)
- Simulation with wave drag: dissipation ≈ 115% inputs (the model ocean is not in steady-state)

Summary

- Simulation without wave drag: dissipation≈ 95% inputs (likely due to non-conservation of a tracer quantity [Griffies et al., 2000; Leclair and Madec, 2009] and the ocean is not in steady-state)
- Simulation with wave drag: dissipation ≈ 115% inputs (the model ocean is not in steady-state)
- Both the addition of a wave drag parameterization and going to a higher resolution (1/12° to 1/25° HYCOM) improves the model and never makes the model worse

Why I'm here

- Let's do the same with CESM's ocean component (POP)!
- There are several minor details with putting this into a model like: 1) the range of relevant wavenumbers for the internal waves to not be evanescent, 2) estimating the parameters in non-abyssal hill regions an alternative way, 3) relaxing the assumption of small off-diagonal components to the topographic information tensor, and 4) using a depth-dependent momentum deposition procedure that Garner (2005) used (rather than using the bottom 500 meters)

How N^2 in $1/10^o$ POP compares with Argo data

$$\mathbf{T}(x,y) = \begin{bmatrix} \frac{\rho N}{(2\pi)^2} \int dk dl |P(k,l)| \frac{k^2}{|\vec{k}|} & \frac{\rho N}{(2\pi)^2} \int dk dl |P(k,l)| \frac{kl}{|\vec{k}|} \\ \frac{\rho N}{(2\pi)^2} \int dk dl |P(k,l)| \frac{kl}{|\vec{k}|} & \frac{\rho N}{(2\pi)^2} \int dk dl |P(k,l)| \frac{l^2}{|\vec{k}|} \end{bmatrix} = (4)$$
$$\begin{bmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{bmatrix},$$

$$\chi_0(x,y) = -\frac{\rho N}{2\pi} \int d\vec{x}' \frac{h(\vec{x}')}{|\vec{x} - \vec{x}'|} = -\rho N \int d\vec{k}' \frac{\hat{h}(\vec{k}')}{|\vec{k}'|} \exp[i\vec{k}' \cdot \vec{x}]$$
(5)

 β is set to be proportional to the magnitudes of the spatial gradients in the bathymetry

Spatially varying input parameter plots for the Garner (2005) scheme

Implementation of wave drag in the momentum equations

$$r_{drag} = \frac{\vec{\tau} \cdot \vec{u}_d}{\rho |\vec{u}_d|^2} \tag{6}$$

where \vec{u}_d is the velocity field averaged over the bottom 500 meters,

$$\vec{\tau} = (\tau_x, \tau_y) = \left(\frac{D_p}{D^*} + \frac{D_{np}}{D^*}\right) (\mathbf{T}\vec{u}_d),\tag{7}$$

$$D^{*} = a_{0} \frac{\rho V_{\tau}^{3}}{NL_{r}} h_{r}^{\gamma} \left[\frac{(2\gamma - \epsilon)(H_{max}^{2+\gamma - \epsilon} - H_{min}^{2+\gamma - \epsilon})}{NL_{r}} \right]$$
(8)
$$D_{p} = a_{0} h_{r}^{\gamma} \frac{\rho V_{\tau}^{3}}{NL_{r}} \frac{2\gamma - \epsilon}{H_{max}^{2-\gamma - \epsilon}} - H_{min}^{2-\gamma - \epsilon} \left(\frac{H_{clip}^{2+\gamma - \epsilon} - H_{min}^{2+\gamma - \epsilon}}{2+\gamma - \epsilon} + H_{crit}^{2+\beta} \frac{H_{max}^{2-\epsilon - \beta} - H_{clip}^{2-\epsilon - \beta}}{\gamma - \epsilon - \beta} \right),$$
$$D_{np} = a_{1} h_{r}^{\gamma} \frac{\rho V_{\tau}^{3}}{NL_{r}(1+\beta)} \frac{2\gamma - \epsilon}{H_{max}^{2-\gamma - \epsilon}} \left(\frac{H_{max}^{1+\gamma - \epsilon} - H_{clip}^{1+\gamma + \epsilon}}{1+\gamma - \epsilon} - H_{clip}^{1+\gamma + \epsilon}} - H_{crit}^{1+\beta} \frac{H_{max}^{\gamma - \epsilon - \beta} - H_{clip}^{2-\epsilon - \beta}}{\gamma - \epsilon - \beta} \right),$$

and

$$V_{\tau} = -\frac{\bar{u}_{d} \cdot (\mathbf{T}\bar{u}_{d})}{\sqrt{(u_{d}T_{1,1} + v_{d}T_{2,1})^{2} + (u_{d}T_{1,2} + v_{d}T_{2,2})^{2}}}.$$
(9)

Curls of drags and wind stress

b) Wave drag curl $[\log_{10}(s^{-2})]$

Relationships between curls of drags and wind stress

Is the model spun-up?

Is the model spun-up (cont...)?

a) Center of gravity without wave drag [fraction of water column]

Is the model spun-up (cont...)?

