Wilbert Weijer (LANL) Erik van Sebille (UNSW, Sydney)

Agulhas Current

- Classical Western Boundary Current (like Gulf Stream, Kuroshio, etc.)
- Closes subtropical wind-driven gyre of South Indian Ocean

Los Alamos
NATIONAL LABORATORY

Stramma & Lutjeharms (1997)

Agulhas Current

- Classical Western Boundary Current (like Gulf Stream, Kuroshio, etc.)
- Closes subtropical wind-driven gyre of South Indian Ocean

Stramma & Lutjeharms (1997)

Agulhas Current: Retroflection

Agulhas Current undergoes Retroflection

Agulhas Current: Retroflection

- Agulhas Current undergoes Retroflection
- Retroflection is unstable
 - Periodic shedding of *Agulhas Rings* (~ 6 rings per year)

Agulhas Leakage: Ring Shedding

Agulhas Rings filled with warm and salty water

• Drift into South Atlantic: Agulhas Leakage

Agulhas Leakage: Super Gyre

Operated by Los Alamos National Security, LLC for NNSA

OS

EST. 1943

Agulhas Leakage: Global Impact

- Gordon (1985)
 - "Such a warm water link between the Atlantic and Indian oceans would strongly influence global climate patterns"

Agulhas Leakage: Global Impact

- Gordon (1985)
 - "Such a warm water link between the Atlantic and Indian oceans would strongly influence global climate patterns"
- Weijer et al. (1999, 2001, 2002)
 - Heat and salt injection through Agulhas Leakage
 - Strengthens MOC
 - Stabilizes MOC

Agulhas Leakage: Global Impact

Biastoch et al. (2008)

- High-resolution model of Agulhas region, nested in global model
- "Dynamical signals from Agulhas region contribute MOC signal of same order of magnitude as those arising in the north"

Agulhas Leakage: Implications

- How will Agulhas Leakage change in warmer climate?
 - Poleward shift of wind belts
- How will this affect the MOC?

Agulhas Leakage: Implications

- How will Agulhas Leakage change in warmer climate?
 - Poleward shift of wind belts
- How will this affect the MOC?
- How is Agulhas Leakage represented in state-of-the-art Climate Model?

• Lagrangian analysis

- CCSM4 20th century runs
- Monthly 3D velocity fields, 1980-2005
- Release 110,000 numerical floats in Agulhas Current
 - How many make it into South Atlantic?
 - How many make it across 21°S?

Office of

Science

U.S. DEPARTMENT OF ENERGY

Alamos

NATIONAL LABORATORY

EST. 1943

LOS

Operated by Los Alamos National Security, LLC for NNSA

Office of

Science

U.S. DEPARTMENT OF ENERGY

Operated by Los Alamos National Security, LLC for NNSA

Office of

U.S. DEPARTMENT OF ENERGY

cience

Operated by Los Alamos National Security, LLC for NNSA

Office of

Science

- Agulhas Current okay
- Agulhas Leakage overestimated by factor 3
- Recirculates in super-gyre

- Agulhas Retroflection inertial process
- Not captured by low-resolution 1° models
- Instead, leakage takes place in viscous boundary layer

Does Agulhas Leakage influence MOC in CCSM4?

• Leakage influences MOC through salinity anomalies

Actual volume flux irrelevant

Reference time series: S_{34S}

- Salinity averaged over upper 1000 m
- In southeastern South Atlantic

Look for

- Coherence between S_{34S} and MOC
- Correlations between S_{34S} and anywhere else

Coherence of the AMOC with S(34S)

Coherence of the AMOC with S(34S)

Joint response to ENSO: AMOC

EST. 1943

Office of

cience

Operated by Los Alamos National Security, LLC for NNSA

Science

U.S. DEPARTMENT OF ENERGY

Conclusions

• Agulhas Leakage too strong in CCSM4

- Factor of 3
- Too strong coupling between South Atlantic and Indian Oceans ("super gyre")
- Salinity too homogeneous

• No discernible impact of Agulhas Leakage variability on MOC

- Salinity variability too weak
- Study is inconclusive

Meridional Coherence of the AMOC

Good Metric of Agulhas Leakage Impact?

