

Future Development of the iESM

WILLIAM COLLINS^{1,5*}

WITH JAMES EDMONDS⁴, PETER THORNTON³, ANTHONY CRAIG², WILLIAM EMANUEL⁴, GEORGE HURTT⁶, ANTHONY JANETOS⁴, ANDREW JONES¹, CHARLES KOVEN¹, WILLIAM RILEY¹, AND JOHN TRUESDALE²

- 1. Lawrence Berkeley National Laboratory
- 2. National Center for Atmospheric Research
- 3. Oak Ridge National Laboratory
- 4. Pacific Northwest National Laboratory Joint Global Change Research Institute
- 5. University of California, Berkeley
- 6. University of Maryland
- Founding partner, Argos Analytics

Acknowledgements: DOE

Outline of Status of the iESM System

- Status of code for the integrated Earth System Model (iESM)
- Experiments and proposed extensions to the iESM system
- Interactions among the iESM team, SDWG, and CESM

Human Dimensions

Clean Energy

Water Supplies

iESM schematic

Foundations for iESM are:

- Global Change Assessment Model (GCAM):
- Global Land Model (GLM):
- Community Earth System Model (CESM):

Applications:

RCP 4.5 Land-use in AR5 IPCC simulations

Current iESM Coupling Implementation

Status:

- iESM code is written.
- iESM code is running at multiple DOE computing centers and at JGCRI.
- Validation against conventional uncoupled RCP integrations is mostly complete.

The iESM Coupling Diagram

Coupler	Input	Output	Status
1	IAM	Downscaling	Running
2	Downscaling	Land Model	Running
3	Land Model	IAM	Running
4	IAM	Land Model	Coded
5	Downscaling	IAM	Coded
6	Land Model	Downscaling	Coded

The iESM information exchange and feedbacks

Emulation of pasture distributions using iESM

et Thu Apr 5 13:50:08 2012

Coupled iESM

gpast

longitude (degrees_east)

Range of gpast: 0 to 1 (null) Range of longitude: -179.75 to 179.75 degrees_east Range of latitude: -89.75 to 89.75 degrees_north Current time: 0 day as %Y%m%d.%f File glm_state_2020.orig.nc Coupled – "Sneaker Net" iESM gpast

longitude (degrees_east)

Range of gpast: -5.00679e-06 to 2.39909e-05 (null) Range of longitude: -179.75 to 179.75 degrees_east Range of latitude: -89.75 to 89.75 degrees_north Current time: 0 day as %Y%m%d.%f File glm_state_diff_2020.nc

Status: We can reproduce the distributions of pasture to 1 part in 100,000.

jet Thu Apr 5 13:44:58 2012

iESM experiment 0: Bioenergy scenarios with one-way coupling

- Information flow: IA to downscaling to Earth System Model
- Sanity check: Does the one-way pass of information replicate the original RCP4.5 simulation done in CMIP5?
- Policy sensitivity: For different policy but same concentration pathway, does the evolution of the climate system differ?
- **Experiment** 0:

Contrast two pathways:

- RCP4.5 carbon price on all carbon (UCT)
- RCP4.5 carbon price ONLY on fossil carbon (FFICT)

Janetos, Jones, et al, 2012 Jones et al, 2012

Experiment 0 work flow

Major findings of experiment 0

- The two scenarios have the same radiative forcing from GHGs.
- Yet they are substantially different in the evolution of the climate: the equivalent of 1.5 W/m², or about 0.5°C global annual average.
- But it is also true that the actual policy chosen matters in this case the very large land-use change associated with FFICT.
- Radiative forcing by GHGs is not a complete metric for evaluating the evolution of the climate system
- Next steps: Extend iESM to rest of forcings in RCP protocol.

Jones et al, 2012

iESM multi-phase coupling strategy

Experiment 1.2 underway

Experiment includes feedbacks on land productivity from CLM to GCAM.

- These feedbacks alter agriculturally-driven land allocation in GCAM.
- This experiment has illuminated many issues with the RCP conceptual framework and implementation in AR5.
- However, the team is still working to reconcile:
 - Three different representations of plants and crops in GCAM, GLM, and CLM.
 - Three different treatments of the carbon cycle in the same models.
- The team is confident these issues can be resolved.

Atmospheric Methane

Atmospheric concentrations up by 2.5X.

- Preindustrial concentration = 700 ppb.
- Current concentration = 1794 ppb.
- Since 1750, CH₄ contributed 0.5 W/m² to direct radiative forcing of climate.
- \triangleright CH₄ is most abundant GHG after H₂O & CO₂.
- Methane is 30X effective as a GHG than CO_2 .
- Methane is the most abundant reactive trace gas in the troposphere.

Methane budgets for the current climate.

Methane emissions and forcing scenarios

- GCAM is basis of Representative Concentration Pathway (RCP) 4.5, with 4.5 W/m² forcing by 2100.
- Anthropogenic emissions and forcing peak mid-century, then decline.
- Will higher natural fluxes counteract lower anthropogenic emissions?

Methane Biogeochemical Models for Land

 \triangleright CH₄ emissions are hardest to predict of "big 3" LLGHGs:

- Net emissions = small differences between large gross fluxes
- Net emissions, have non-linear dependence on system properties and state variables (e.g., moisture, temperature)

[Jobaggy 2000, Field et al. 2007, Zimov et al. 2006, Tarnocai et al. 2009, Schuur et al. 2008]

Ocean hydrates: A positive feedback?

- Oceanic hydrates are a significant reservoir of carbon.
- Could warmer oceans melt the hydrates?
- Could this appreciably enhance the Earth's greenhouse effect?

Modeling Natural and Anthropogenic CH₄

Opportunities afforded by iESM

- iESM provides the capability for immediate tests of future scenarios as these scenarios are developed.
- It enables quantification of impacts of feedbacks that are yet to be treated under current protocols and yet could be significant on mitigation timescales.
- Effects of CH₄, aerosols, and short-lived agents on energy markets can be readily explored in this framework.
- Modeling community has made major strides in developing prognostic representations of CH₄ (N₂O next).
- Net effects of higher natural methane emissions and lower anthropogenic emissions remains to be determined.

Next steps for the integrated Earth System Model

- Extensions underway to handle forcings besides LULCC: full RCP complement of LLGHGs, aerosols, etc.
- Proof-of-concept experiments of extensibility to other IAMs that conform to the RCP "handshake" protocol.
- Friendly-use release to CESM Societal Dimensions Working Group and global climate community.

Relation of iESM to CESM's new Societal Dimensions Working Group (SDWG)

CESM is primarily sponsored by the National Science Foundation and the Department of Energy

http://www.cesm.ucar.edu/management

Plans for public release of iESM

Next milestone: "Friendly" release to SDWG:

- Code (for inspection)
- User documentation and technical manuals:
 - ✓ CESM and GCAM technical documentation
 - ✓ GLM draft technical description
 - ✓ iESM draft online user guide and manual
- Peer-reviewed papers describing iESM
 - ✓ CESM, GCAM, and GLM literature well established.
 - ✓ Experiment 0 paper in press at the Journal of Climate
 - ✓ iESM conceptual overview submitted to PNAS.
- Input and output from the iESM

Proposed timeline of public release:

- 1st step: "Friendly release to SDWG"
- 2nd step: Review by the SDWG
- 3rd step: If OK'ed by SDWG, review by CESM SSC
- 4th step: If OK'ed by SSC, public release of iESM as part of CESM
- iESM framework should admit other IAMs (tests underway)

Topics for consideration by the SDWG

- Exchange of experiences using ESMs for any societally relevant analysis
- Provision of climate model simulations for IAM community activities
 - Simulations tailored for Latin America Modeling Project?
 - Simulations for SSP reference scenarios?

Coordinated research activities involving CESM

Sensitivity of climate to regional land use change, and vice-versa

Provision of code for linking models (e.g., iESM)

Discussion

- Capability to run all RCPs with output from IAMs participating in RCP process substituted for GCAM?
 - ✓ Testing underway using IMAGE.
- Capacity to use other RCP models interactively in iESM?
- **Extensibility of iESM framework to link other IAMS and ESMs?**
- Potential for iESM to advance community interactions?

Human Dimensions

Clean Energy

Water Supplies