WACCM Studies in the Upper Stratosphere and Lower Mesosphere V. Lynn Harvey, C. E. Randall, J. France, E. Peck, L. Holt, M. Brakebusch

France and Harvey [2013], A Climatology of the Stratopause in WACCM and the Zonally Asymmetric Elevated Stratopause, accepted at JGR.

Brakebusch et al. [2013], Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005, accepted at JGR.

Brakebusch et al. [2013], Attribution of Ozone Loss During the Antarctic Winter 2005, in prep.

Holt et al. [2013], Descent of EPP-NOx during Arctic Sudden Stratospheric Warmings, in prep.

Randall et al. [2013], Auroral Energy Particle Precipitation: An Atmospheric Coupling Agent?, in prep.

Peck et al. [2013], Solar Cycle Impacts as Simulated by WACCM4, in prep.

Peck et al. [2013], EPP vs. Solar Irradiance Effects on the Atmosphere in WACCM, in prep.

Latitude Time Annual Cycle

Arctic Winter

Antarctic Winter/Spring

Longitude Altitude Plots

Annual Cycles in Polar Vortices and Anticyclones

SH

ES Event Monthly Frequency

December ES events in WACCM are not observed by MLS

Stratopause Composites 1 Month Before and 1 Month After ES Events

WACCM

MLS 2012

Matthias Brakebusch: Polar stratospheric ozone studies and WACCM evaluation

Brakebusch et al. [2013], Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005, accepted at JGR.

- SD-WACCM is a useful tool for investigating polar O₃ loss.
- 2. SD-WACCM O_3 and MLS O_3 differences are smaller than 10%.
- 3. Temperature bias improves heterogeneous chemistry and thus O_3 loss.

Brakebusch et al. [2013], Attribution of Ozone Loss During the Antarctic Winter 2005, in prep.

Laura Holt: Descent of EPP-NOx during Arctic SSWs

Science questions:

- How do sudden stratospheric warmings affect the transport of NO_x created by energetic particle precipitation?
- Does the timing of the warming affect the amount of NO_x

Randall and Peck: EPP and Solar Effects in WACCM

MIPAS NOx (left), WACCM NOx from the HA run (middle), and the % difference (right) for the SH in 2003 >70°S.

Annual cycle of WACCM4 NO_x, O₃, T, U at 80°S for strong aurora vs. weak aurora runs.

Randall et al. [2013], Auroral Energy Particle Precipitation: An Atmospheric Coupling Agent? Peck et al. [2013], Solar Cycle Impacts as Simulated by WACCM4 Peck et al. [2013], EPP vs. Solar Irradiance Effects on the Atmosphere in WACCM

Future Work: Lagrangian Trajectories

Thanks!