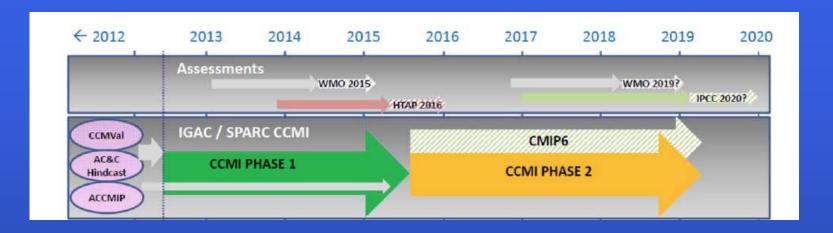
Chemistry Updates for CCML

Doug Kinnison

11 February 2013
WACCM Working Group Meeting
NCAR


Why Do Another Assessment?

- NESL / ACD community contribution.
- Increases national and international collaborations.
- Fosters model improvements (preparing for simulations).
- Creates new model diagnostics and model improvements after simulations are complete!
- Promotes scientific research.

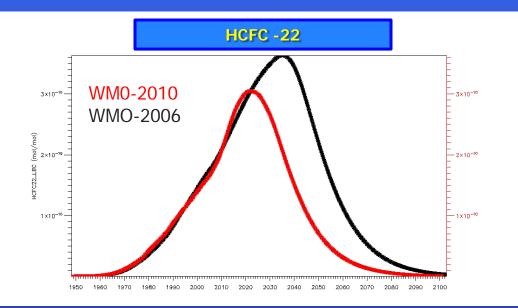
Recommendations from CCMVal2

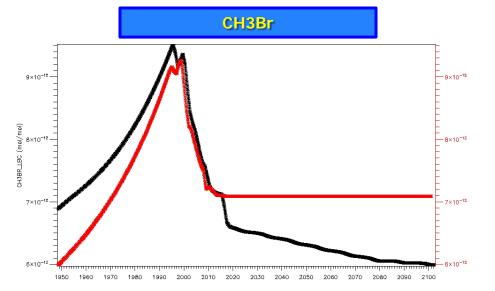
- Inclusion of a more comprehensive representation of troposphere-stratospheric chemical processes. DONE
- Inclusion of VSL Organic Bromine species. DONE
- Inclusion of a couple ocean. DONE
- Inclusion of internally derived QBO. Maybe
- Correct the persistent late-spring breakdown of the Antarctic Vortex. NO
- Improve the representation of volcanic heating. NO

Chemistry Climate Model Initiative (CCMI)

- First meeting was in May 2012 (Davos Switzerland).
- Next meeting will be hosted by NCAR in May 2013.
- The initial phase of CCMI will be to support the WMO 2015 O₃ Assessment.
- Model simulation will start by 1 March 2013.
- Model simulation will include "nudged" approaches for CCML.

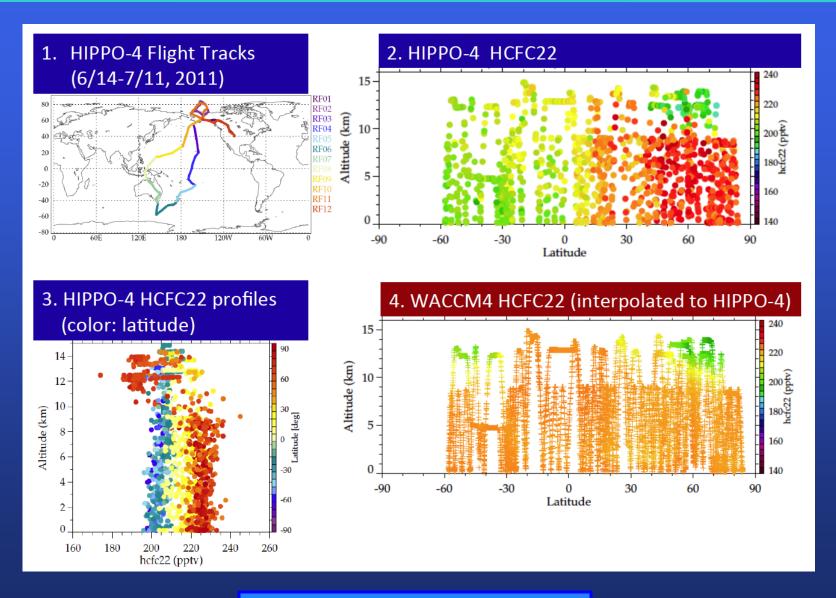
Planned Simulations

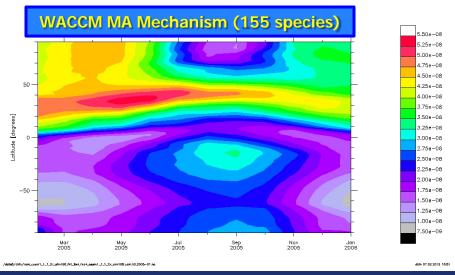

Table 1. Summary of proposed IGAC/SPARC CCMI reference simulations.


Name of Reference Simulation	Period	Greenhouse Gases	ODSs	SSTs/SICs	Background & Volcanic Aerosol	Solar Variability	VSLS	QBO	Ozone and Aerosol Precursors
REF-C1	Transient simulation 1960-2010 Appropriate spin up prior to 1960	OBS GHG used for CMIP5 simulations, updated until 2010.	OBS (WMO, 2011)	OBS HadISST1	OBS Surface Area Density data (SAD)	OBS Spectrally resolved irradiance data, Proton ionization, Ap	YES	OBS or internally generated	OBS Based on Lamarque et al. (2010), but annual emissions
REF-C1SD (nudged for CCMs, or CTMs)	Transient simulation 1980-2010	OBS Same as REF-C1	OBS Same as REF-C1	OBS Consistent with met. reanalysis	OBS Same as REF-C1	OBS Same as REF-C1	Same as REF- C1	Same as REF-C1	OBS Same as REF-C1
REF-C2	Transient simulation 1960-2100 10-year spin up prior to 1960	OBS to 2005 then RCP 6.0 (Masui et al., 2011)	OBS + A1 scenario from WMO (2011)	Modeled SSTs	OBS Background SAD	YES Spectrally resolved irradiance data, Proton ionization, Ap	YES	YES	Same as REF-C1 until 2000 + RCP 6.0 scenario in the future

Chemistry Updates

- Organic Halogens
- Tropospheric Chemistry Additions
- Updated Heterogeneous Module
- New Surface Area Density Time series
- Rate and Satellite / Aircraft Output.


Organic Halogens Updated to WM0-2010


- WMO-2010, Chapter 5
 - SD-WACCM / MERRA
- No Surrogates
 - 18 species total
 - 8 new species
- Long-lived (> 50 years)
 - CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl₄, halon-1301
- Medium (10-50 year)
 - halon-1211, halon-1202, halon-2402, HCFC-22, HCFC-142b
- Short (1-10 years)
 - CH₃CI, CH₃Br, CH₃CCl₃, HCFC-
- Very Short Lived (<6months)
 - CHBr₃, CH₂Br₂

Organic Halogens Latitudinal Gradient

Inclusion of Tropospheric Chemistry (155 Species; 434 Rxns)

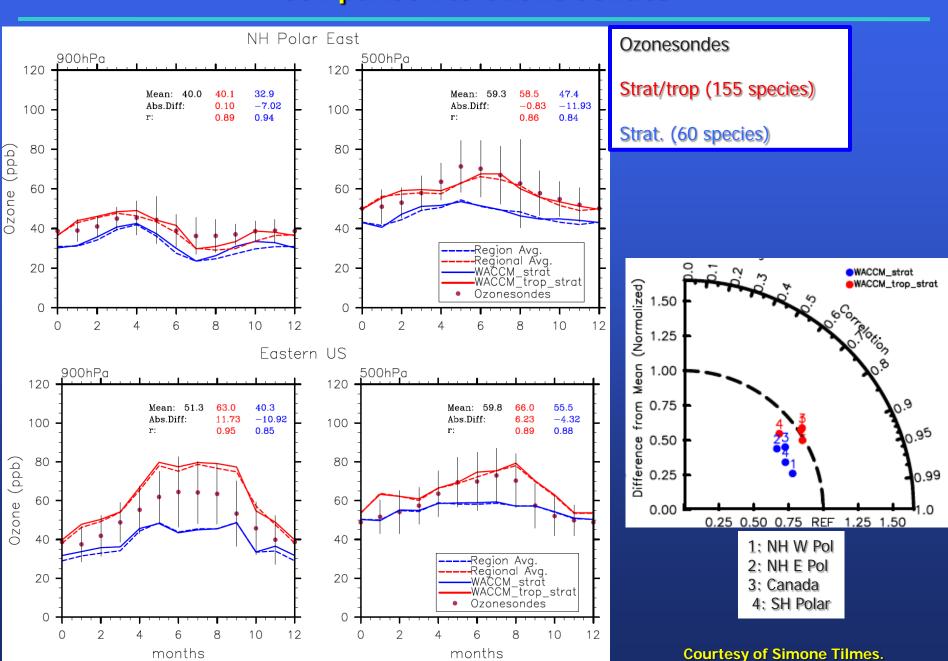
Acknowledge: G. Brasseur, J. F. Lamarque, L. Emmons, J. Orlando, C. Granier, et al.,

Standard Tropospheric Species

CH₄, CO, CH₂O, CH₃COOH, CH₃O₂

Additional Tropospheric Species (srf emis)

- C1: CH₂OH, HCOOH, HOCH₂OO
- C2: C₂H₂, C₂H₆, C₂H₄, C₂H5O₂, C₂H₅OH, C₂H₅OOH, CH₃CO₃, CH3COOOH, EO2, EO, EOOH, GLYALD, GLYOXAL, PAN
- C3: C₃H₆, C₃H₈, C₃H₇O₂, C₃H₇OOH, CH₃COCH₃, CH₃COCHO, PO2, POOH, CH₃CHO, RO2, ROOH, HYAC, ONIT
- C4: BIGENE, ENEO2, MEK, MEKO2, MEKOOH, MVK, MACR, MACRO2, MACROOH, MCO3, MPAN,
- C5: ISOP, ISOPO2, ISOPNO3, ISOPOOH, BIGALK, BIGALD, HYDRALD, ALKO2, ALKOOH, ONITR, XO2, XOOH
- C7: TOLUENE, CRESOL, TOLO2, TOLOOH, XOH, TERPO2, TERPOOH
- C10: C10H16
- Other: HCN, CH3CN
- Aerosol: NH₃, OC1, OC2, CB1, CB2, DMS, SO₂.

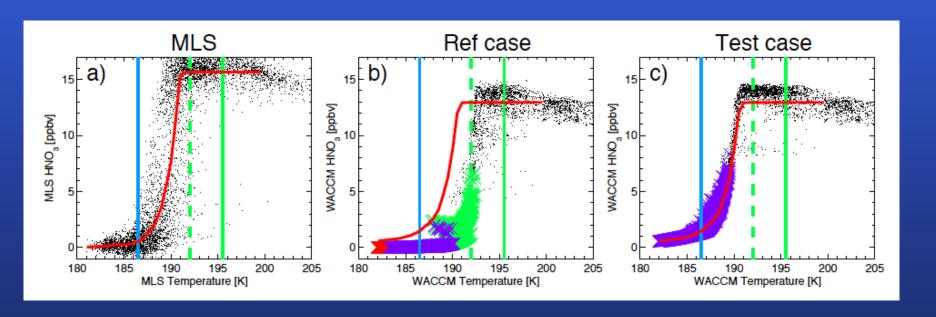

Emissions (CO, NO, NMHCs):

- IPCC ACCMIP / CCMI (1950-2100).
- Emmons (1992-2010)

Bulk Aerosol Model (BAMS)

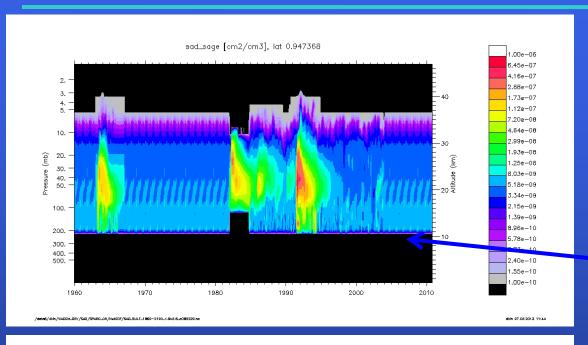
- Sulfate, Black Carbon, Organic Carbon, and Ammonium Nitrate, SOA, SSLT(4), DST(4)
- Neu Wet deposition

Comparison to Ozone Sondes



New Heterogeneous Module

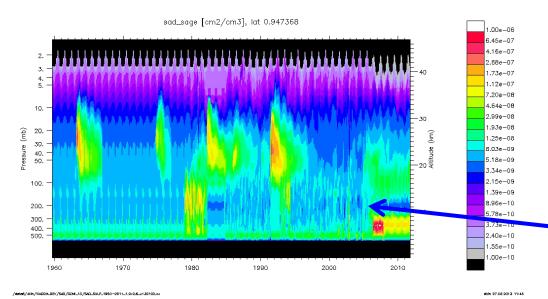
Wegner, T, D. E. Kinnison, R. R. Garcia, S. Madronich, S. Solomon, and M. von Hobe, On the depletion of HCI in the Antarctic polar vortex, in review, *J. Geophys. Res.*, 2013.

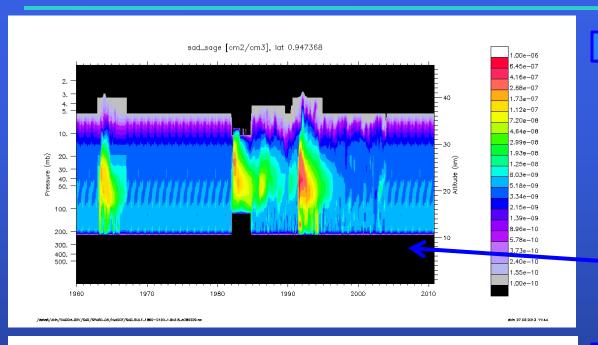

Wegner, T, D. E. Kinnison, R. R. Garcia, S. Madronich, and S. Solomon, Polar Stratospheric Clouds in SD-WACCM4, in review, *J. Geophys. Res.*, 2013.

Brakebusch, M., C. E. Randel, D. Kinnison, S. Tilmes, M. Santee, and G. Manney, Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005, *In press*, *J. Geophys. Res.*, 2012.

Also improved the representation of dehydration.
Set a rhminh for the stratosphere (dehydration starts at 100% saturation of H₂O over ICE.

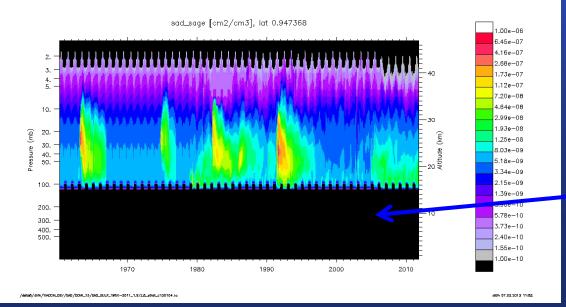
New Sulfate Surface Area Density Time Series



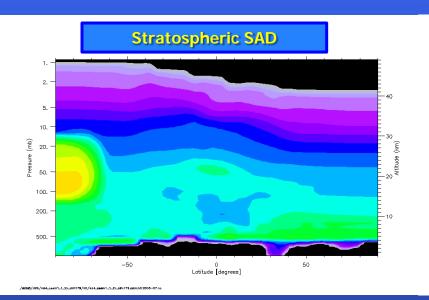

SAD zero for P > 200 hPa

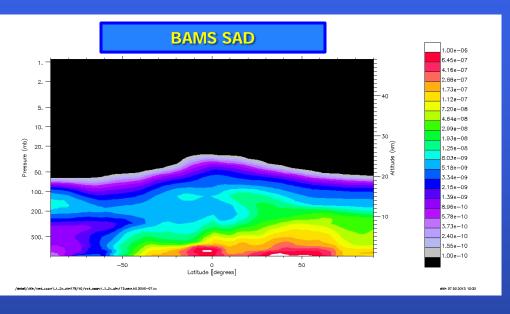
Note the volcanic influence below the tropopause.

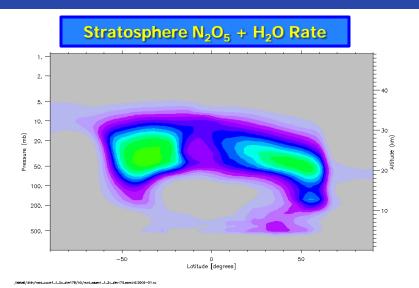
New Sulfate Surface Area Density Time Series

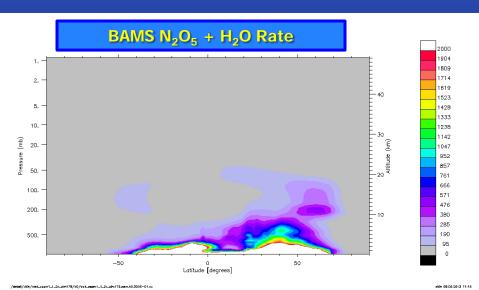


SAD zero for P > 200 hPa

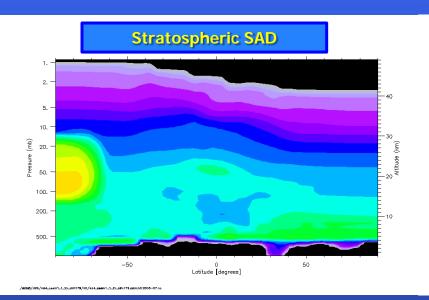

CCMI SAD

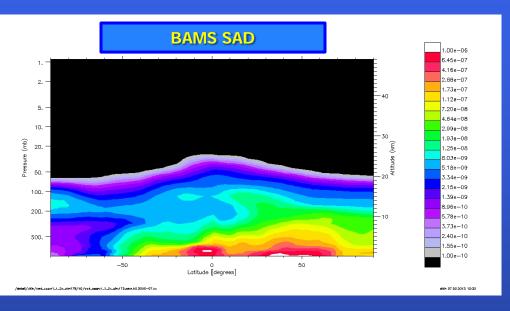

Zero SAD below Tropopause.

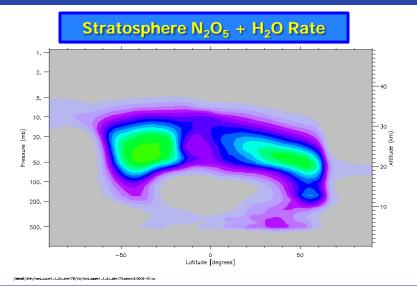

Ryan Neeley is currently examining impact of SAD time series.

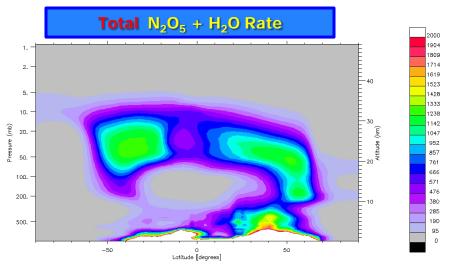


Stratospheric and Tropospheric SAD (BAMS) - July

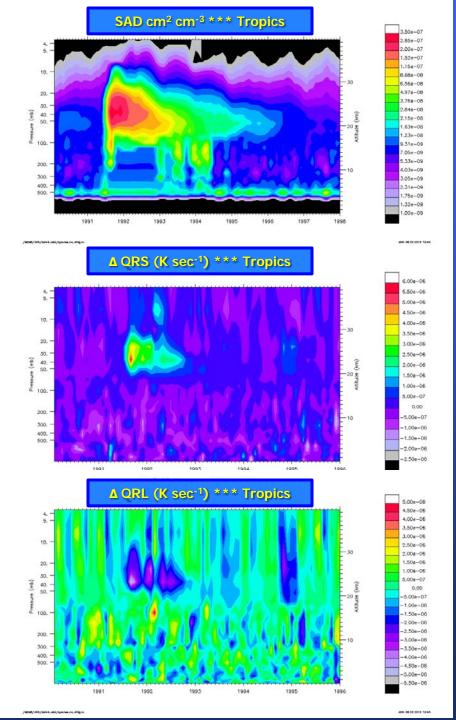








Stratospheric and Tropospheric SAD (BAMS) - July

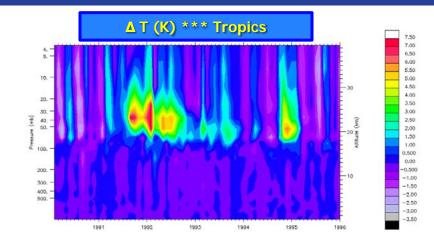


stat5/dkin/ws4_com1_1_2x_sim179/h0/vs4_easm1_1_2x_sim179.earm.iv6.2005—01.nc

dish 09.02.2013 11:1

Volcanic Heating

Procedure to derive heating rates:


- 1) Derive Volume Density (cm⁻³ aer / cm³ air)
 - Function (SAD, size distribution, # particles)
- 1) Density of H₂SO₄ Aerosol (g aer / cm³ aer
 - Liquid binary model (Tabazedeh, 1997)
- 1) Weight fraction (g H₂SO₄ / g Aer)
 - Tabazedeh et al., 1997.

Chemistry: g H₂SO₄ cm⁻³ air

Radiation wants: H₂SO₄ in kg m⁻²

CAMRT Derives Heating

Optics: 75% wt; 0.5 micron

Satellite Output for SD Simulation.

Don't have =>

Don't have =>

	ဝိ	H ₂ O	CH⁴	N ₂ O	CCI ₃ F	CCI ₂ F ₂	္ပ	生	SF ₆	NO	NO ₂	NOx	HNO ₃	HNO⁴	N ₂ O ₅	CIONO ₂	NO _y	HCI	CIO	HOCI	BrO	ОН	HO ₂	CH ₂ O	CH ₃ CN	aerosol
ACE-FTS	Х	Х	X	Х	X	X	Х	х	X	X	X	X	Х	Х	Х	X	Х	X						Х		
Aura-MLS	Х	Х		Х			Х						Х					X	X	X		Х	Х			
GOMOS	Х										X															X
HALOE	Х	Х	X					Х		X	X	X						X								
HIRDLS	Х				X	X					X		X													
LIMS	Х	Х									X		X													
MAESTRO	Х																									
MIPAS	Х	Х	X	Х	X	X	Х		X	X	X	X	Х	Х	Х	X	X		X	X				Χ		
OSIRIS	X										X	X					X				X					X
POAM II	Х										X															Х
POAM III	Х	Х									X															Х
SAGEI	Х																									
SAGE II	Х	Х									X															Х
SAGE III	Х	Х									X															Х
SCIAMACHY	X	X									X	X									X					X
SMILES	Х												Х					X	X	X	X		Х		Х	
Odin/SMR	X	X		X			X			X			X				X m		X				X			
TES	X						X t																			
UARS-MLS	X	X											X						X							

In additions:

- BUV, SBUV Nimbus 7,9,11,14,16,17,18,19
- CONCORDIASI PSC (6-balloon campaign)
- SOFIE
- SABER
- PEX 2005, 2010
- RECONCILE 2010
- SME

Acknowledge: Matthias Brakebusch (CU) for assembling coordinate file.

Aircraft Output

TBD!

