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Stratosphere Lower Thermosphere 

• Fraser (1977) found evidence of concurrent 5-day 
variability in ionospheric scatter and lower 
stratospheric temperature during various seasons.  

• Meyer (1999) suggested that planetary-scale waves 
that survive dissipation may influence the ionosphere. 

• Liu and Roble (2002) showed that the wintertime 
variability associated with a SSW can reach into the 
thermosphere. 

• Liu et al. (2010) suggest that the presence of quasi-
stationary PW in the thermosphere is necessary to 
couple the high latitudes with the tropical latitudes. 



NH 2009 Winter: SSW 

• Using WAM, Wang et al. (2011) show that the tidal 
amplitudes undergo substantial changes at times 
around the SSW of January 2009: resonant triads. 

• Examining ERA-Interim data, Goncharenko et al. (2012) 
relate the tidal amplitude in the thermosphere with 
ozone changes in the stratosphere following a SSW. 

• Using upper atmosphere data analysis products, 
McCormack et al. (2010) suggest that phase locking 
between tides and QTDW is another potential 
mechanism that can affect tidal amplitudes. 



WACCMX-SD 

• WACCMX in SD configuration (lid at 3.3x10-9 hPa 
~ 400 km). 

• Data analysis products are obtained merging 
NASA/MERRA and NRL/NOGAPS-ALPHA. 

• Focus period is January-February 2009. 
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Spectral Analysis 
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Coherence Analysis: 
Spatial Structure 



• Symmetric about the EQ 
• Amplitude peaks ~110 km 
• Vertical wavelength is ~30-40 km 
• Amplitude decreases rapidly 

above 120 km with the phase 
becoming vertically uniform  
external mode. 

• Consistent with an ultra-fast 
Kelvin mode. 



• Amplitude peaks in the SH at 
~100 km and decreases rapidly 
above. 

• Coherence is nearly global and 
extends above and below the 
base point. 

• Mode becomes external above 
140 km. 

• Likely the Rossby-gravity quasi-
two day wave. 



• These waves correspond to the 
fundamental Rossby modes at wave-
1 and wave-2. 

• It is curious that substantial 
amplitudes seem to emerge from 
the upper mesosphere. 

• Both modes become external above 
120 km but (1,1) shows larger 
amplitude in the summer 
hemisphere toward 200 km. 



• The migrating tides show nearly global coherence. 
• Below 120 km: DW1 is mostly equatorially trapped; SW2 is 

nearly anti-symmetric about the equator. 
• Above 140 km both modes become external: DW1 shows 

increasingly larger amplitude in the summer hemisphere 
(likely due to EUV heating); SW2 shows increasingly larger 
amplitude in the winter hemisphere (possibly caused by 
zonal wind asymmetries). 



• The non-migrating modes show also nearly global coherence. 
• The amplitudes are small below ~100 km, and peak between 120 and 150 km at 

the equator. 
• Modes become external above 150 km. 
• Note that the presence of significant amplitude of both the SE2 and DE3 is bound 

to result in ambiguity of fields plotted as a function of local time. 



Temporal Behavior 



Day since 1 January 2009 



Day since 1 January 2009 



Comparison to SABER 
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• The presence of high-latitude vacillations at wave-1 and 
wave-2 in the upper mesosphere has been noted also by 
Meyer and Forbes (1997) and more recently by Chandran 
et al. (2013) following the 2012 SSW. These are transient 
planetary-scale, Rossby-like waves that are generated by 
barotropic/baroclinic instabilities of the zonal circulation. 

• Tides are very fast waves (~ 460 m s-1) and less likely to be 
affected directly by changing winds in the lower 
atmosphere. 

• Tides can, however, be affected indirectly by changing 
winds through changes of the background vorticity: 
McLandress (2002) documented the inter-seasonal 
variability of tides in the upper mesosphere and lower 
thermosphere in a linear tidal model and showed it is 
controlled by changes of the background vorticity at lower 
levels. 
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Closing remarks 
• We have used WACCMX in SD configuration during the focus period January-

February 2009.  
• Using a combination of NASA/MERRA and NRL/NOGAPS-ALPHA atmospheric 

specification we have been able to nudge the WACCM meteorology from the 
ground to ~90 km, providing a realistic background state to study the meteorology 
that emerges in the lower thermosphere. 

• Tides, ultra-fast Kelvin waves and Rossby waves are present with statistically 
significant amplitude.  

• All modes become external (constant phase in height) in the thermosphere, with 
vanishing amplitude for most above 120-150 km as a result of dissipation due to 
molecular viscosity. A prominent exception is DW1 which becomes external above 
~120 km but its amplitude increases in the thermosphere: this is likely the result of 
in situ forcing that is latitudinally broad and thus projects on modes with a  
negative equivalent depth (thus, external). 

• Intra-seasonal variability of the tides in the upper mesosphere has been associated 
with concurrent changes of the background vorticity, as previously shown by 
McLandress (2002) for the inter-seasonal variations. 

• This relationship is less effective at controlling the amplitude of tides at higher 
levels in the thermosphere. 
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