Nudging and moist physics quantities in CAM

Julio Bacmeister, Patrick Callaghan NCAR/CGD

Overview

- We should have been more skeptical that moist quantities looked so good in nudging runs.
 - Now we are
- Can we learn from our mistake(s)?
- Future work

"Physics-side" Nudging in CAM SE

YOTC re-analyses 5/2008-5/2010

Nudging terms,

$$\dot{\chi}_{ndg}(t) = R(x, y, p, t) \left(\frac{\chi(t) - \chi_{ana}}{\tau_{ndg}} \right); \quad \chi = [u, v, q, T]; \quad \tau_{ndg} = 6 \text{ hrs (here)}$$

are added to RHS of model prognostic equations. The $\dot{\chi}_{ndg}$'s are calculated on the "physics side".

- Lots of machinery to restrict nudging in space
- independently specifiable time-scales au_{ndg} for each variable.

Precipitation 2009/8 (nudged) CAM5 simulated (2.97 mm d⁻¹)

17.00

Precipitation 2010/8 (free running)

Precipitation Hovmueller diagrams Oct 1-Dec 31 2009 Averaged 10°S-10°N

"Physics-side" Nudging in CAM SE

YOTC re-analyses 5/2008-5/2010

Nudging terms,

$$\dot{\chi}_{ndg}(t) = R(x, y, p, t) \left(\frac{\chi(t) - \chi_{ana}}{\tau_{ndg}} \right); \quad \chi = [u, v, q, T]; \quad \tau_{ndg} = 6 \text{ hrs (here)}$$

are added to RHS of model prognostic equations. The $\dot{\chi}_{ndg}$'s are calculated on the "physics side".

- Lots of machinery to restrict nudging in space
- independently specifiable time-scales au_{ndg} for each variable.

"Physics-side" Nudging in CAM SE

YOTC re-analyses 5/2008-5/2010

Nudging terms,

$$\dot{\chi}_{ndg}(t) = R(x, y, p, t) \left(\frac{\chi(t) - \chi_{ana}}{\tau_{ndg}} \right); \quad \chi = [u, v, q, \chi]; \quad \tau_{ndg} = 6 \text{ hrs (here)}$$

are added to RHS of model prognostic equations. The $\dot{\chi}_{ndg}$'s are calculated on the "physics side".

- Lots of machinery to restrict nudging in space
- independently specifiable time-scales au_{ndg} for each variable.

Temperature nudging was inadvertently reduced by factor of c_{p}

<u>Hmmm....</u>

- Distribution and magnitude of precipitation is good
- Cloud forcings look fine
- Correlation of monthly-mean T with re-analysis is over 0.95 at most altitudes

If we fix T-nudging things are going to get even better

Following results are with corrected nudging in CAM-SE at ne30 (~1 degree)

but **NOT** T

u,v,q, and

nudging

Moist physics quantities			
	No nudging	Nudge[u,v,q]	Nudge[u,v,q,T]
PRECT (mm d ⁻¹)	3.07	2.85	1.57
LWCF (W m ⁻²)	21.4	21.7	11.6
SWCF (W m ⁻²)	-49.1	-44.8	-35.2
CLDLOW (%)	41.1	37.2	33.8
CLDHIGH (%)	35.9	43.3	25.0
LWP (g m ⁻²)	43.2	36.4	34.0
IWP (g m ⁻²)	16.5	17.9	8.8

Temperature bias profile (Aug 2009)

Temperature anomalies at 500 hPa (Dec 2008)

13.00

11.00

r>0.99

Even without T-nudging temperature fields are well constrained

What is this saying about CAM(5) physics?

- Simply that ERA/YOTC physics like different T profile?
- ERA/YOTC analyses already "adjusted"?
- CAM physics are biased?

Should nudging give good global means of moist physics quantities?

Nudging configurations that yield reasonable global means of precipitation, cloud-forcing ...

- Nudging *u,v*
- Nudging *u,v,q*
- Nudging u, v, T (+ q_{sfc} gives best agreement with GPCP)
- Nudging u,v,q,T (with bias correction added to T-nudging)

Daily correlation of CAM w/ TRMM (Aug 2009)

Daily global mean precipitation (Aug 2009)

Zonally-averaged annual mean precipitation

Summary and Questions

- Several ways to obtain reasonable mean precipitation and other moist quantities in nudged runs
 - Can't nudge both q and T to straight ERA
 - Mean biases in T-profile are critical (haven't looked at q yet)
 - Pattern correlations are insensitive to mean
 - Temperature fields well constrained even without direct nudging
- Why do we want good precipitation in nudged runs?
 - Should convection schemes fire when presented with "observed" state?
- Will different re-analyses yield different results?
 - What about own reanalysis (DART)?

Future Work

- (Re-)run coupled and high-resolution nudged simulations
- Understand large-scale/convection partitioning
- Coordinate with "dynamics-side" nudging development in ACD/CGD (Lauritzen, Lamarque, Witt).
 - Implement divergence-free momentum nudging

Thank You

Precipitation <u>types</u> 2009/8 (nudged)

17.00

17.00

9.00 8.00 7.00 5.00 4.00 3.00 2.00 1.00 0.50 0.20

Precipitation **types** 2010/8 (free running)

Precip fractions in nudged run are more convective