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Using Macro+Microphysics as a Testbed for
Improved Time-Integration Methods

(A Sociological Experiment)
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Is Better Physics Timestepping Needed?
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Fig 1: Change in low cloud fraction due to Fig 2: Liquid water path before & after
changing the physics parameterization At microphysics from a single-column
from 30 min to 7.5 min. Based on 5 yr 2° MPACE-B run.

atmosphere-only simulations with Y2K SST

Yes! CAMS is very sensitive to At (Fig. 1) and
pathological coupling issues exist (Fig. 2)
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from Physics Lecture 1 in 2010 CESM
Tutorial (by A. Gettelman)

Surface Fluxes

Microphysics
) Detrained g3

Clouds (A),

* Processes interact (often
implicitly through
pointers)

g

CAMS Physical Processes Y/



Is a Chunk of CAM Accessible for
Yes: Mathematicians?

* Recent macro+micro development removes dependencies & makes

code readable by non-experts
* A community effort provides means to run these codes in isolation

Kinematic Driver (KiD) Framework

* Designed for idealized microphysics I;di:%. Interface: Cm'i_e.to
intercomparisons (Shipway + Hill ‘12) Y - renames + Optimize:
TVD advection M
. . . o . r‘eor‘der‘s acro +
* It provides driving conditions for the | from Leonard T
macro+micro code we want to test et al (1993) RS
MG2 Microphysics PDF Macrophysics:
« Microphysics is actually a collection of ~* Macro = sub-grid cloud fraction + liquid
sub-processes condensate mass calculations
* Sean Santos’ efforts with MG2 make it  * Using my parameterization for simplicity: if
really easy to understand/tinker with supersaturated mass is s, then

Macro is NOT
implemented in
KiD yet

Cloud Fraction = f : PDF (s)ds
Cloud Mass = [ s+ PDF(s)ds

* Andrew and Hugh have already ported
MG2 to KiD




‘warml’: steady updraft

height (m)

LI%UId Water Mixing Ratio (g/kg)
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Mimics an updraft which is:

uniform in height
increases in magnitude
to 600s, then disappears
0=300 K in lower atmos
(so warm procs only)

Test Cases

‘warm7’: Subtrop Sc

height (m)

0.0

0 10000 20000
time (sec)

Mimics subtropical

stratocumulus:

* w is height-dependent
and varies sinusoidally in
time

* Moisture is continually
added to maintain cloud

e 0=288 K in BL (so warm
procs only)

‘mixedl’: mixed-phase Sc

LI%UId Water Mixing Ratio (g/kg)

height (m)
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(g |iquid in this
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MG2 produces
negligible

0 10000
time (sec)

20000

Mimics mixed-phase Sc:

w varies sinusoidally in
time and |w| increases
with height

Moisture is continually
added to maintain cloud
0=257 K in BL (so mixed-
phase)

there are other cases we could use — these just caught my fancy



Not Just Doable, But Useful!
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Cloud Liquid Budget (At = 30 min)
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Fig: Global-ave g, budget from 1

month 2° CAMS5 run. Courtesy Hui Wan
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At sensitivity is largely

explained by reducing mac

+mic time step

1.2

 Macro/micro balance
dominates the q_budget

at default At
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— but mac+mic is not the whole

story

Fig: Zonal-ave LWP from last 4 yrs of 5 yr

CAMS5 runs

employing various time steps



1. “Conservation Checks”: 7 _

Condensate often goes negative... = " (i o
20

and treatment of this case is crude 2

Fig: LWP 2%
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3. Numerical convergence is still
an issue. Improved comput-
ational efficiency is needed

Targets for Improvement
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Fig: Frequency
of micro
completely
removing cloud
liquid

i 2. Multi-scale interactions between

| sub-processes are missing (macro,

micro, ice nucleation, precip, etc)

T | Fig: Lwp
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~N 5h s
= ‘warm1’ as
S 4t i
o micro At
s T 1 hanges
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=2 1000s A :
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time

40005e 15 At).



So — Want to Collaborate?

e My goal: make CAM param-

eterizations accessible to math

folks and see what happens

— Carol Woodward’s FastMath
team is signed on so something

will happen

— | will be working on these issues
as well

— | would love to get other people
involved...

Fig: Example of the prize
you could win for coming
up with the best time-

stepping implementation



Contact: caldwell19@linl.gov




How Important is Macro+Micro?
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Fig: Time-average LWP as a function of macro+micro At
when all processes use that timestep (solid) and when
macro+micro are substepped and all other processes use
the default (20 min) At . Colors represent different

ensemble members. From MPACE-A single-column runs.

 Macro+Micro are a major but not the sole source
of At sensitivity in MPACE-A runs



MG2 Flowchart
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Compute Tendencies for: frz gr again

drop activ \

gi nucleat

melt gs/homog frz gr .

autoconv ac MG?2 is mostly parallel  RAEEERIEIE
autoconv qi . . .

get init fallspeeds split but sedimentation A

immers frz . . .

contact frz is sequential split Get final fallspds

gs aggreg substep for CFL

accret qc—=>qs stability:
secondary gi prod
accret gr—->qs
hetero gr frz
accret qc—>qr

gr self-collect
accret gi—>gs
evap/sublim gr/qi
berg gs

gi depos/sublim

compute mass flux
convergence

use to update
state

Update state /




Target for Improvement: At Convergence
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Fig: LWP from ‘warm1’ as At for Fig: LWP from ‘warm1l’ as micro
both micro and dynamics is At changes (subcycling dynamics
changed. to use 1 s At).

* Using full-model At anywhere near that used by CAM doesn’t
work because the dynamics CFL is quickly surpassed

e Calling micro less frequently suggests a 10 s timestep is
needed for convergence (CAM uses a 15 min micro At)



Subcycling Dynamics

Subcycled dynamics in prev slide had micro tend
= 0 for all steps when micro wasn’t called. What
if micro tend was instead trickled in over all

dynamics substeps?
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F|g3 micro tend applled Only when Fig: Micro tend applied every

micro called dynamics substep



