ENSO Asymmetry in CMIP5 Models

De-Zheng Sun

CIRES, University of Colorado & Earth System Research Laboratory, NOAA http://www.noaa.gov/psd/people/dezheng.sun

> Acknowledgement: Jiabing Shuai, Yan Sun, Tao Zhang

Outline

- ENSO Asymmetry in CMIP5 Models
- The Climatological Equatorial Cold-tongue (Warm-pool) in CMIP5 models
- Excessive cold-tongue (or smaller warm-pool) and Weak ENSO asymmetry: Are They Linked?
- An atmospheric root-cause for the excessive cold-tongue and weak ENSO asymmetry?

What is ENSO asymmetry?

ENSO Amplitude & Asymmetry in CMIP5 Models

SST skewness pattern from CMIP5 coupled models

5

ENSO Amplitude and Asymmetry in CMIP5 Models

Box plot for variance

Box plot for Skewness

ENSO Amplitude and Asymmetry in CMIP5 Models

Probability Density Distribution of Variance (left) and Skewness (right) of Nino3 SST Across the Multi-Model, Multi-Run Ensemble of CMIP5

The Excessive Cold-tongue

The Excessive Cold-tongue

30 9.5

The Cold-tongue stratified by the two phases of ENSO

Correlation of ENSO asymmetry with warm-pool size differences

Differences in the Mean SST between models with above-average ENSO asymmetry and those with below average ENSO asymmetry

Small Skewness Warm Pool in CMIP5

Biases in the Mean SST (ensemble mean)

43

Biases in the warm phase and cold phase anomalies (ensemble mean)

A Possible Cause of An Excessive Cold-tongue: A too strong zonal wind in AMIP runs already ?

Skewness of equatorial zonal wind stress

Sensitivity of ENSO asymmetry to

changes in mean zonal winds and skewness of the zonal wind anomalies

	!!!!!!!! !!!Experiment!ID!!!	<pre>!!!!!!Surface!wind!stress! !</pre>		<pre>!!!Statistics!of!Nino3!SSTA!!</pre>	
	(label!in!figures)!	Climatology!	!Anomaly!	Skewness!	!Standard! deviation(! ^o C)!
	!!!Experiment!I!	Observation! ! !	Observation! !	!!!!1.16!	!!!!!!0.75!
20	ntrol)	CMIP5‼amip‼ ensemble! !	Observation! !	!!!!0.92!	!!!!!!0.73!
	!!!Experiment!III!	CMIP5‼amip! ensemble! !	CMIP5‼amip! ensemble! !	!!!!!0.70!	!!!!!!!0.63!
	!				
	!!!Experiment!IV!	Observation! !	CMIP5‼amip! ensemble! !	!!!!!1.18!	!!!!!!!0.64!

Wind-forced ocean GCM experiments suggest that the stronger time-mean zonal winds and weaker asymmetry in the inter-annual anomalies of the zonal winds in AMIP models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models, but the former appears to be a more fundamental factor, possibly through its impact on mean SST and thereby stability the coupled system: deep convection is less responsive when the mean SST is cold.

Summary

- Underestimate of ENSO asymmetry is a common bias in CMIP5 models, but some models are less biased than others. The NCAR CCSM4 stands out as the best model in simulating ENSO asymmetry!
- The common underestimate of ENSO asymmetry in the models appear to be linked to the prevalence of an excessive cold-tongue in the models.
- The generally stronger zonal winds in the AMIP runs of the models than observations is suggested as a possible root cause of the development of an excessive cold-tongue in the coupled models.

Model-Obs. Differences in Mean Zonal Wind Stress and Precipitation

Warm Phase Precipitation and Zonal Wind stress in the AMIP runs

Correlation across models between ENSO Asymmetry and Warm-pool size

C

OBS=0.24 Model=0.24 r=0.46

Ensemble mean warm anomalies from AMIP (15 models) Models -OBS

ensemble mean zonal wind stress warm anomalies from CMIP5 AMIP runs (15 models)

2

-2

-6

4

3

5

Models - Observation

6

The Associated Double ITCZ Syndrome

30N

20N 10N Eq 10S 20S 30S

Ensemble mean warm anomalies from AMIP (15 models) Models -OBS

ensemble mean precipitation warm anomalies from CMIP5 AMIP runs (15 models)

Asymmetry in the subsurface

25

120E 140E 160E 180 160W140W120W100W 80W

subsurface temp. residuals (warm+cold)

Consistent with SST residual, 2 deg CCSM4 has the strongest residual in subsurface temp.

What is ENSO asymmetry?

The Warm-pool & Cold-tongue Configuration in the Tropical Pacific

Nonlinear Heating From ENSO Fluctuations

FIG.8: Distribution of Nonlinear Dynamics Heating (NDH) in the run with ENSO
for the equatorial upper ocean (5°S-5°N) as a function of longitude and depth (a) and
for the surface layer of the tropical Pacific as a function of latitude and longitude (b).
The contours are the corresponding time mean upper ocean temperature (a) and SST
(b). The units for the heating rate are in °C/month.

Are these two biases Linked?

Theory: They Are Linked!

926 927

928 929

930

931

FIG. 5. Time series of T_2 when $T_{e}=28.5^{\circ}$ C and $T_{e}=31^{\circ}$ C. The time series are taken from the case with s=0.096 (Fig. 4cd). The two horizontal lines in the figure indicate respectively the time-mean value of T_2 (solid line) and its equilibrium value (dashed line).

Are They Linked?

The Excessive Cold-tongue

SST climatology (degree)

NASA CGCM

HadCM3

GFDL CM2 a11o2

GFDL CM2 30N 25N 20N 15N 5N 5S 10S 10S 20S 25S 3 8 h

120E 140E 160E 180 160W140W120W100W 80W

NCAR CSM1

NCAR CCSM2

NCAR CCSM3

Are They Linked?

Are these two biases linked?