Improving Cloud Water Inhomogeneity Parameterization in CAM

Xin Xie and Minghua Zhang

Stony Brook University, SUNY

Three types of subgrid scale cloud variability

1. Cloud and precipitation particle sizes are represented by the Palmer distributions:

$$\phi(D) = N_0 D^{\mu} e^{-\lambda D}$$

For cloud ice, snow, and rain, $\mu = 0$. For cloud droplets, $\mu = 1/\eta^2 - 1$ $\eta = 0.0005714N + 0.2714$

2. Subgrid scale distribution of cloud water and ice by gamma functions:

$$P(x) = \frac{1}{\Gamma(v)} \frac{1}{\theta^{v}} x^{v-1} \exp(-\frac{x}{\theta}) \qquad \qquad \begin{matrix} v & \text{shape parameter} \\ \theta & \text{scale parameter} \end{matrix}$$

3. How clouds are vertical stacked.

Bulk microphysics processes

$$M_p = xq_c^{y} \qquad \qquad \overline{M_p} = x\frac{\Gamma(\nu+y)}{\Gamma(\nu)\nu^{y}}\overline{q_c}^{y}$$

ARM MICROBASE Cloud Water Data:

- High temporal and high vertical resolution (10s, 45 meters)
- Different locations Barrow (NSA), Lamont (SGP), and Darwin (TWP3)
- Long term record (2007-2010)

ARM CMBE hourly wind data are used to do time-space conversion

MLM Gamma fitting for different lengths (L)

v as a function of height and length scale Three ARM sites in different seasons, DJF and JJA

Parameterization using grid size and vertical stability as independent variables

v = v(L, Static Stability)

$$v = 0.44 + 8.3(0.60 - S)(0.05 + L^{-2/3})$$

S:
$$\frac{h_{950mb} - h_{*500mb}}{450mb}$$
, (J/Pa)

v = v(L, Stability_CAPE)

Comparison at individual stations

Implementation in CAM5

➤ Bulk scheme, instead of using fixed v=2 or v= 1, use the parameterized v in

$$\overline{M_p} = x \frac{\Gamma(\nu + \gamma)}{\Gamma(\nu)\nu^{\gamma}} \overline{q_c}^{\gamma}$$

Sub column calculations

Sub column microphysics calculations

- Gamma distribution of liquid water content with parameterized *shape parameter*.
- Combination of maximum-random and random cloud overlapping assumption using decorrelation depth assumption.
- Cloud water mass conservation.

timestep:36, 0.5000day

0

200

400

600 800 Single Column Model Run SGP 19950719 Use 30 sub columns Snapshot at 36 timestep

Large Scale LWC Feature

0.40

PRECTWFALL

Summary

- 1. A simple parameterization of the shape parameter of the subgrid scale distribution of cloud liquid water is proposed as a function of model resolution and vertical stability.
- 2. Sub-column method by sampling the parameterized pdf of cloud water was used in cloud microphysics and radiation calculations.
- 3. At 2-degree resolution, the sub-columns do not change the simulated climate much from the default CAM5, but they gave the subgrid scale distribution of stratiform precipitation that can be valuable for land surface processes.