

A multi-layer plant canopy model for CLM

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA

> Mat Williams School of GeoSciences University of Edinburgh

Rosie Fisher and Keith Oleson NCAR

> CESM Land Model Working Group Meeting Boulder, Colorado 24 February 2014

NCAR is sponsored by the National Science Foundation

Prevailing stomatal paradigm: Ball-Berry

NCAR model, 1995

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. D2, PAGES 2817-2831, FEBRUARY 20, 1995

Land-atmosphere CO₂ exchange simulated by a land surface process model coupled to an atmospheric general circulation model

Gordon B. Bonan National Center for Atmospheric Research, Boulder, Colorado

676

JOURNAL OF CLIMATE

VOLUME 9

CSU-SiB, 1996

A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part I: Model Formulation

P. J. Sellers, * D. A. Randall,[†] G. J. Collatz, * J. A. Berry,[®] C. B. Field,[®] D. A. Dazlich,[†] C. Zhang,[†] G. D. Collelo,[®] and L. Bounoua[®]

> *NASA/GSFC, Greenbelt, Maryland Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado Carnegie Institution of Washington, Stanford, California *USRA, NASA/GSFC, Greenbelt, Maryland

> > (Manuscript received 23 June 1995, in final form 1 August 1995)

Journal of Hydrology 212-213 (1998) 79-94

A canopy conductance and photosynthesis model for use in a GCM land surface scheme

Hadley Centre, 1998

P.M. Cox^{a,*}, C. Huntingford^b, R.J. Harding^b

"Hadley Centre, Bracknell, RG12 2SV, UK "bustitute of Hydrology, Wallingford, OX108BB, UK Received 16 February 1996; accepted 7 October 1996 Journal of **Hydrology**

 $A_{c} = \frac{V_{c \max}\left(c_{i} - \Gamma_{*}\right)}{c_{i} + K_{c}\left(1 + o_{i} / K_{o}\right)}$ $A_{j} = \frac{J\left(c_{i} - \Gamma_{*}\right)}{4\left(c_{i} + 2\Gamma_{*}\right)}$ $A_n = \min(A_c, A_j) - R_d$ $g_s = g_0 + g_1 A_n h_s / c_s$

Photosynthesis &

stomatal conductance

Stomatal optimization

An alternative approach models stomatal conductance by optimizing water use efficiency (A_n/E)

With simplifying assumptions, the Ball-Berry style model can be derived from optimization theory

 $g_s = g_0 + 1.6 (1 + g_1 D_s^{-1/2}) A_n / c_s$

(Medlyn et al. 2011)

Annals of Botany 105: 431-442, 2010 doi:10.1093/aob/mcp292, available online at www.aob.oxfordjournals.org

A stomatal optimization theory to describe the effects of atmospheric CO₂ on leaf photosynthesis and transpiration

Gabriel Katul^{1,2}, Stefano Manzoni^{1,2}, Sari Palmroth^{1,*} and Ram Oren¹

¹Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA and ²Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA *For correspondence. E-mail sari.palmroth@duke.edu

Received: 4 August 2009 Returned for revision: 21 October 2009 Accepted: 10 November 2009 Published electronically: 8 December 2009

Global Change Biology (2011) 17, 2134-2144, doi: 10.1111/j.1365-2486.2010.02375.x

Reconciling the optimal and empirical approaches to modelling stomatal conductance

BELINDA E. MEDLYN*, REMKO A. DUURSMA†, DEREK EAMUS‡, DAVID S. ELLSWORTH†, I. COLIN PRENTICE*, CRAIG V. M. BARTON§, KRISTINE Y. CROUS¶, PAOLO DE ANGELIS||, MICHAEL FREEMAN** and LISA WING ATE††

Soil-Plant-Atmosphere (SPA) model

A multi-layer SPA-enabled canopy model for use with CLM

1. Radiative transfer

Within this framework, evaluate Ball-Berry model and two different stomatal optimizations:

5

iWUE: $\Delta A_n / \Delta g_s > \iota_*$ and $\psi_L > \psi_{Lmin}$ WUE: $\Delta A_n / \Delta E > \iota$ and $\psi_L > \psi_{Lmin}$

Difference relates to VPD: $\iota_* = \iota D_s$

5. Above- and within canopy turbulence and scalar profiles

Ned Patton (NCAR) Ian Harman (CSIRO)

Stomatal efficiency determines maximum A_n and g_s

Leaf simulations for 4 values of iota (μ mol CO₂ mol⁻¹ H₂O)

Functional relationships emerge from theory

VPD dependence (WUE optimization) is consistent with observations and theory:

 $g_s/g_{sref} = 1 - 0.5 \ln D_s$

Oren et al. (1999) Plant Cell Environ. 22:1515-1526 Katul et al. (2009) Plant Cell Environ. 32:968-979

Consistent with empirical and optimal models

Scatter plots US-Ha1, July 2001

Mean diurnal cycle US-Ha1, July 2001

Prolonged drought: US-Me2, July 2002

Evolving drought: US-Me2, July 2005

Site x year summary of model skill

Model parameters

Symbol	Description	Units
V _{cmax25}	Maximum carboxylation rate at 25 °C	μ mol m ⁻² s ⁻¹
r _a	CLM rooting distribution parameter	m ⁻¹
r _b	CLM rooting distribution parameter	m ⁻¹
Ball–Berry model		
g_0	Minimum leaf conductance	mol H ₂ O m ⁻² s ⁻¹
g ₁	Slope parameter	_
Optimization model		
ψ_{lmin}	Minimum leaf water potential	MPa
k _ρ	Leaf-specific stem hydraulic conductance	mmol $H_2O m^{-2} s^{-1} MPa^{-1}$
C _p	Plant capacitance	mmol H ₂ O MPa ⁻¹ m ⁻²
l	Stomatal efficiency	μ mol CO ₂ mol ⁻¹ H ₂ O
M _T	Fine root biomass	g m ⁻²
r _r	Fine root radius	m
r _d	Specific root density (fine root)	g biomass m ⁻³ root
R_r^*	Fine root hydraulic resistivity	MPa s g mmol ^{−1} H ₂ O

Parameter sensitivity analyses fail to find optimal g_0 and g_1 to minimize RMSE (tradeoff between parameters), but does find optimal ι and R_r^* (because these two parameters explain most of RMSE)

Multi-scale model evaluation

New directions with a multi-layer plant canopy

1. Optimization vs empirical stomatal models

Functional relationships emerge from numerical optimization rather than being empirically imposed

- 2. Canopy turbulence (Ned Patton, NCAR; Ian Harman, CSIRO)
- 3. Dry deposition (biases in CLM4, Maria Val Martin, CSU)
- 4. BVOCs (already in CLM4.5)
- 5. Isotopes (already in CLM4.5)
- 6. Canopy chemistry how does the chemical environment affect surface fluxes?