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Improvements of Plant Nitrogen Cycle
Processes

Nitrogen allocation

Plant organs (root, stem, leaf)

Functions (photosynthesis, respiration, structure)
Carbon assimilation

Strongly linked to leaf nitrogen allocated to
photosynthetic enzymes



Large uncertainty in model predictions
of carbon sinks
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CLM predictions of historical carbon

sinks
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Large variation of Vecmax in models lead to
variations in GPP among models

Vcmax is maximum rate of Rubisco-mediated carboxylation
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Modeling Carbon Assimilation
.
1 Farquhar Model
A, = min (W, W;, W,)

max (C; — Cp, 0)
02 chaxt

R0

Rubisco limited carboxylation W, =

(Ci + Kct)(l +

W= max (C; — C,, 0)
J 7 (4C; + 8Cy)

Electron transfer limited carboxylation

End product utilization VVp = O-Schaxt
(Farquhar et al. 1980, Planta)



Calculation of Vecmax in CLM

Vemax = Qy2s- Fyr-Fingr- Np

1
N, =
““ CN,.SLA

a,,5 = specific activity of Rubisco at 25°C
Fur = nitrogen fraction of Rubisco

F.ng = fraction of leaf nitrogen in Rubisco
N, = leaf nitrogen content

CN, = carbon to nitrogen ratio of leaf

SLA = specific leaf area



Parameters estimated from A-C. curve
el

CO, Assimilation Rate (A)

Internal CO, Concentration (c;)



CLM GPP downregulation

Downregulation of potential GPP based on nitrogen
availability

Potential Vcmax used to calculate potential GPP

Problems with potential Vemax
Hard to define what we mean by potential Vemax
Inconsistent with field observations of actual Vemax

Difficult to select a function type for performing
downregulation



Modifications to CLM4.5

Removal of GPP downregulation

Prognostic leaf nitrogen

Dynamic Vecmax linked to prognostic leaf nitrogen
Nitrogen allocation

Plant scale N allocation based on carbon allocation
and C:N ratio

Leaf scale functional N allocation for reaction enzymes

Flexible C:N ratio



Two methods to remove GPP
downregulation

Method1:

Flexible C:N ratio for storage pools for all plant parts

Fixed C:N ratio for growth pools for all plant parts

Method 2:

Flexible leaf C:N ratio for both storage and
growth /display pools

Fixed C:N ratio for both storage and growth/display
pools for all other plant parts



Photosynthetic parameters increase with increase in

leaf nitrogen at global scale based on TRY data
I
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Fraction N allocated to Rubisco

decreases with leaf N at global scale
B
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Nitrogen Use Efficiency varies by PFT
N

B - 1 —
10

100 E —F—
" 9
HE mg 3 -
— 5 7 __3
3 -
-] :_ —3F— -
“E Wi, 2 TG
h -

20 E -

uE .........  EEEEEEEERE [ FEEEEEIEE [FEEEERINER [ EEENINEERE [FEEIEEEEN

NUE (pmol (CO,) g(N-') ')
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1 Tropical trees (oxisols)

2 Tropical trees (nonoxisols)

3 Temperate broadleaved.
evergreen trees

4 Temperate broadleaved
deciduous trees

5 Evergreen coniferous trees

6 Deciduous coniferous trees

7 Evergreen shrubs

8 Deciduous shrubs

9 C3 herbaceous

10 C3 arops



CLM Site Level Evaluation
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CLM Site Level Evaluation
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Calculation of Leaf Nitrogen Allocation

1 Global Plant Traits Database (TRY)

o1 Allocation to different processes

Photosynthesis

m Carboxylation
m Electron transfer
w Light capture
Respiration

® Maintenance

m Growth
Structure
Residual

) ) Process Rate
Nitrogen Allocation =

Nitrogen use ef fiency

Nitrogen use ef ficiency = (enzyme activity) (nitrogen fraction of enzyme)



Global patterns of leaf nitrogen

allocation by PFT
s
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Optimal Leaf Nitrogen Allocation

CLM has fixed nitrogen allocation for Rubisco

Optimal leaf photosynthetic nitrogen allocation
relies on dynamic allocation for enzymes which
varies with environmental conditions

Optimality framework

Maximizes nitrogen-use efficiency given environmental
conditions [Niinemets and Tenhunen 1997; Xu ef al.

2012]



Optimal Leaf Nitrogen Allocation

Model Evaluation: Barrow Alaska
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Optimization based on mean
environmental conditions at
the site

Vecmax predicted by the
optimal allocation model has
reasonable fit with observed
Vcmax (see figure b).



Summary

Current Model Developments
Integration of different plant N cycle mechanisms in the Community Land Model

Model structure uses actual photosynthetic parameters rather than potential
rates

Additional Model Developments
Dynamic C and N allocation based on resource availability
Carbon costs of nutrient acquisition
Belowground N competition between plants and microbes

Scientific Contribution
Prognostic leaf nitrogen dynamically linked to carbon assimilation
Leaf nitrogen allocation to processes using optimality theory

New understanding of N effects on plant productivity and growth
Nitrogen deposition
Permafrost thawing
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