IMPROVING REPRESENTATION OF NITROGEN UPTAKE, ALLOCATION AND CARBON ASSIMILATION IN THE COMMUNITY LAND MODEL

Bardan Ghimire¹, William Riley¹, Charles Koven¹, Alistair Rogers², and Jens Kattge³ ¹Climate Sciences Department, Lawrence Berkeley National Laboratory ²Environmental Sciences Department, Brookhaven National Laboratory ³Max Planck Institute for Biogeochemistry

February 24, 2014

Improvements of Plant Nitrogen Cycle Processes

- Nitrogen allocation
 - Plant organs (root, stem, leaf)
 - Functions (photosynthesis, respiration, structure)
- Carbon assimilation
 - Strongly linked to leaf nitrogen allocated to photosynthetic enzymes

Large uncertainty in model predictions of carbon sinks

3

⁽Beer et al. 2010, Science)

CLM predictions of historical carbon sinks

Large variation of Vcmax in models lead to variations in GPP among models

Vcmax is maximum rate of Rubisco-mediated carboxylation

(Rogers 2014, PR)

Modeling Carbon Assimilation

6

Farquhar Model

$$A_g = \min\left(W_c, W_j, W_p\right)$$

Rubisco limited carboxylation

$$W_{c} = \frac{\max(C_{i} - C_{p}, 0)}{(C_{i} + K_{ct})(1 + \frac{O_{2}}{K_{ot}})} V_{cmaxt}$$

Electron transfer limited carboxylation

$$W_{j} = \frac{\max(C_{i} - C_{p}, 0)}{(4C_{i} + 8C_{p})}J$$

End product utilization

 $W_p = 0.5 V_{cmaxt}$

(Farquhar et al. 1980, Planta)

Calculation of Vcmax in CLM

$$V_{cmax} = a_{r25} \cdot F_{NR} \cdot F_{LNR} \cdot N_{LNR}$$

 $N_{L} = \frac{1}{CN_{L} \cdot SLA}$

 a_{r25} = specific activity of Rubisco at 25^oC

 F_{NR} = nitrogen fraction of Rubisco

 F_{LNR} = fraction of leaf nitrogen in Rubisco

- N_L = leaf nitrogen content
- CN_L = carbon to nitrogen ratio of leaf
- SLA = specific leaf area

Parameters estimated from A-C_i curve

Internal CO_2 Concentration (c_i)

CLM GPP downregulation

- Downregulation of potential GPP based on nitrogen availability
- Potential Vcmax used to calculate potential GPP
- Problems with potential Vcmax
 - Hard to define what we mean by potential Vcmax
 - Inconsistent with field observations of actual Vcmax
 - Difficult to select a function type for performing downregulation

Modifications to CLM4.5

- Removal of GPP downregulation
 - Prognostic leaf nitrogen
 - Dynamic Vcmax linked to prognostic leaf nitrogen
- Nitrogen allocation
 - Plant scale N allocation based on carbon allocation and C:N ratio
 - Leaf scale functional N allocation for reaction enzymes
- Flexible C:N ratio

Two methods to remove GPP downregulation

Method1:

Flexible C:N ratio for storage pools for all plant parts
Fixed C:N ratio for growth pools for all plant parts

- □ Method 2:
 - Flexible leaf C:N ratio for both storage and growth/display pools
 - Fixed C:N ratio for both storage and growth/display pools for all other plant parts

Photosynthetic parameters increase with increase in leaf nitrogen at global scale based on TRY data

Fraction N allocated to Rubisco decreases with leaf N at global scale

Nitrogen Use Efficiency varies by PFT

(Kattge et al. 2009, GCB)

CLM Site Level Evaluation

15

Minnesota 10 Beer et al. data. **CLM** new 8 **CLM4.5** CLM new has GPP [gC m⁻² day⁻¹] better fit to the 6 Beer et al. data than CLM 4.5. 4

CLM Site Level Evaluation

Calculation of Leaf Nitrogen Allocation

- Global Plant Traits Database (TRY)
- Allocation to different processes
 - Photosynthesis
 - Carboxylation
 - Electron transfer
 - Light capture
 - Respiration
 - Maintenance
 - Growth
 - Structure
 - Residual

 $Nitrogen \ Allocation = \frac{Process \ Rate}{Nitrogen \ use \ effiency}$

Nitrogen use efficiency = (*enzyme activity*) (*nitrogen fraction of enzyme*)

Global patterns of leaf nitrogen allocation by PFT

Optimal Leaf Nitrogen Allocation

- 19
- CLM has fixed nitrogen allocation for Rubisco
- Optimal leaf photosynthetic nitrogen allocation relies on dynamic allocation for enzymes which varies with environmental conditions
- Optimality framework
 - Maximizes nitrogen-use efficiency given environmental conditions [Niinemets and Tenhunen 1997; Xu et al. 2012]

Optimal Leaf Nitrogen Allocation Model Evaluation: Barrow Alaska

20

Optimization based on mean environmental conditions at the site

Vcmax predicted by the optimal allocation model has reasonable fit with observed Vcmax (see figure b).

Summary

Current Model Developments

- Integration of different plant N cycle mechanisms in the Community Land Model
- Model structure uses actual photosynthetic parameters rather than potential rates
- Additional Model Developments
 - Dynamic C and N allocation based on resource availability
 - Carbon costs of nutrient acquisition
 - Belowground N competition between plants and microbes
- Scientific Contribution
 - Prognostic leaf nitrogen dynamically linked to carbon assimilation
 - Leaf nitrogen allocation to processes using optimality theory
 - New understanding of N effects on plant productivity and growth
 - Nitrogen deposition
 - Permafrost thawing

Acknowledgements

- 22
- This research is supported by The Next-Generation Ecosystem Experiments (NGEE Arctic) project of Office of Biological and Environmental Research in the DOE Office of Science.
- Additional computing resources is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S.

Systems Understan