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Appearing and Disappearing Lakes in Siberia (Smith et al. 2005) 

Smith et al., 2005 
 



Permafrost hydrology 
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Cold region hydrology and snow in CLM4.5 

Swenson et al., 2012; Swenson and Lawrence, 2012; Swenson and Lawrence, in prep 



Projected carbon stock trends in permafrost zone  
(preliminary results, CLM4.5BGC) 
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Soil carbon decomposition in CLM4.5 
Permafrost zone (ALT < 2m in 1850) 

Temperature scalar (rT) 

Oxygen availability scalar (rO) 

Soil liquid water scalar (rW) 

Decomposition rate 

k = k0 rT
 rW rO rz 

Koven et al. 2012 



Projection of soil drying after permafrost thaw 
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from saturated to drained  

Environmental controls and C release 
Incubation synthesis study, Permafrost RCN 

Preliminary results, courtesy Cristina Schaedel  



Ask the questions 

   

– How much of modeled soil carbon decomposition 
can be attributed to reduced anoxic conditions due 
to soil drying? 

 

– What happens if soils dried faster through sub-grid 
scale vertical ice-free channels in discontinuous or 
sporadic permafrost? 



Experiments 

WET 

‘Maintain’ 1850 soil moist conditions by 
not allowing impedance to flow to 
change as ice melts and by always 
taking transpiration water from 1850 
active layer  

IMPED = 10-6*max[icefrc,icefrc1850] 

 

DRY 

Accelerate drying by assuming that at 
some ice fraction threshold, impedance 
to water flow drops sharply 

Ice fraction 
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Soil moisture trends 
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Impact on decomposition scalars 
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Impact on decomposition scalars 
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Decomposition scalar trends 

k = k0 rT
 rW rO rz ∆ TOTSOMC 
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Impact on CH4 emissions 
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Decomposition scalar trends 

k = k0 rT
 rW rO rz 
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• CLM4.5BGC projects soil drying as permafrost thaws, 
affecting soil water and oxygen availability scalars that 
control soil carbon decomposition 

• Preliminary experiments in which we ‘control’ the soil 
moisture trends by accelerating or slowing the drying 
trend strongly affects the trends of  these scalars 

• Stronger increases in soil water scalar in WET 
experiment versus the DRY experiment counteract 
weaker increases in oxygen availability scalar  weak 
difference in soil carbon decomposition between WET 
and DRY experiments 

• Methane emissions rise much more strongly (3-4x) if  
the soils remain wet 

• The strength of  the depth decomposition scalar 
strongly affects the impact of  deep soil drying on soil 
carbon decomposition 

Summary 
 

 



Future directions: 
Model validation, heterogeneity, scale, and landscape dynamics   

 

Rowland et al. 2010, EOS 



Future directions: Modeling wetland distribution and  
potential for rapid mobilization of soil carbon (thermokarst) 

Ice wedges 
Projected ground  

subsidence by  
2100 

Ice lenses Figure courtesy Hanna Lee 



Process based methane emissions model 
“Barriers to predicting changes in global terrestrial methane fluxes” 

Riley et al., 2011, Biogeosciences 

Large sensitivities (up to 4x and 10x at regional 
and grid scales) in CH4 fluxes from reasonable 

changes in model parameters 
 

Projections highly 
uncertain, but with default 

parameters ~ +20% 
increase in high-lat CH4 

emissions (A1B) 



Bernhard Edmaier  
National Geographic 

Extra Slides 



Potential Arctic terrestrial climate change feedbacks 
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thaws 
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Direct feedback 

Surface energy partitioning 

Permafrost state (especially 
presence or absence of  soil 
ice) affects partitioning of  
net radiation into ground, 
latent, and sensible heat 
fluxes 

Lawrence et al., 2012 



River Discharge from Arctic river basins 

Control Ice Impedance 

Results are mixed: better hydrographs for permafrost basins, but 
degraded simulation in non-permafrost basin 
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River Discharge from Arctic river basins 

Control 

Results: better hydrographs for both permafrost basins and non-permafrost 
basins 
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