Carbon Isotopes in the iCESM Alexandra Jahn

<u>Collaborators:</u> Keith Lindsay, Esther Brady, Bette Otto-Bliesner, Zhengyu Liu

The iCESM project is funded by DOE, Office of Science NCAR is sponsored by the National Science Foundation

Motivation: Better model-data comparisons

- δ¹³C is used to infer paleo ocean water masses (e.g., NADW)
- δ^{13} C can be used as tracers of carbon cycle processes \rightarrow e.g., used to diagnose the oceanic uptake of anthropogenic CO₂
- Δ¹⁴C is used as ocean reservoir age tracer

Implementation Status Carbon Isotopes

- POP2 development + testing completed
- CLM4 development + testing completed
- RTM (needs development, river bulk Carbon transport to ocean BGC is now from data input)
- + CAM5.3 (tracer development initiated)
- + CICE: TBD

Implementation of Carbon isotopes in POP2 (as additional passive tracers)

+ Two different implementations:

- Abiotic Radiocarbon (2 additional <u>tracers):</u> can be run independently of the ecosystem model, oceanmodel cost increase is a factor of 1.2 compared to the normal ocean model
- Biotic ¹³C and ¹⁴C (14 additional <u>tracers):</u> Carbon isotopes in all seven carbon pools currently in the ecosystem. Cost increase is by a factor of 4 compared to ocean only model and 1.4 compared to the normal ocean-ecosystem model

Model set-up

- All simulations were oceanactive-only simulations
- Spin-up simulations are forced with constant preindustrial CO₂ (278 ppm), Δ¹⁴C (0 permil), δ¹³C (-6.379 permil)
- Simulations from 1765 to 2010 were forced with prescribed changing CO₂, Δ¹⁴C, δ¹³C
- + Using CESM1.0.5

Fast spin-up of abiotic radiocarbon with Newton-Krylov (K. Lindsay)

After 3 Newton-Krylov iterations (1 degree model, took < 24 h)

After 6000 model years (took ~2.5 months)

Plots courtesy of Keith Lindsay, NCAR

Results from abiotic Radiocarbon: ¹⁴C age

Impact of fully spinning up the radiocarbon

Atlantic section along 30.5 W

Adding the biological pump and ¹³C

- Currently there are 7 carbon pools in the ecosystem model (DIC, DOC, small phytoplankton, diatoms, diazotrophs, zooplankton, CaCO₃)
 - CO2 002 Large phytoplankton Deep water formation Small phytoplankton Ventilation (upwelling) Zooplankton Microzooplankton Bacteria cal Organic Surface ocean Deep ocean Deep consumers Bacteria Sea floor
- Accounts for fractionation effects during gas exchange, photosynthesis, etc

"Biotic C isotopes" = Includes both biological effects and solubility effects

First results from the biotic δ^{13} C isotope simulation (1990s)

Model compared to the present-day δ^{13} C dataset complied by Schmittner et al (2013)

Atlantic δ^{13} C (1990s)

Carbon isotopes in the atmosphere

- + ¹⁴CO₂ and ¹³CO₂ will be carried in the atmosphere as tracers in addition to the current CO₂ tracer, and will be exchanged with the ocean and land through the calculated surface fluxes.
- For ¹⁴C we need an atmospheric production term:
 We will include a 2-D 14C production field (height and latitude), supplied by Fortunat Joos, Ulla Heikkilae, and Jürg Beer

Next steps

 Investigate relationship between δ13C and physical model variables under different MOC strengths

- Include abiotic radiocarbon in at least one ensemble member for the Last Millennium large ensemble, using the Newton-Krylov fast spin-up technique to obtain initial conditions
- + Add Pa/Th to the ocean model as additional tracer (hopefully also Neodymium)

Thanks!

Contact: ajahn@ucar.edu

