Changes in the distribution of rain frequency and intensity in response to warming

Angeline Pendergrass

NCAR ASP Postdoctoral Fellow

Changes in the distribution of rain

- 1. Introduction
 - Why the distribution would change
- 2. Theory
 - Shift and increase modes of change
- 3. Response to CO_2 increase in CMIP5 models
 - Shift + Increase modes
 - Extreme mode

Moisture increases, Precipitation increases less

Held and Soden (2006)

Extreme precipitation increases with moisture

Rain distribution should change shape

- Global-mean rainfall increases by 2 %K⁻¹
- Extreme rain rate increases by around 7 %K⁻¹

The distribution must change

 Less frequent, more intense rainfall

Trenberth (1999)

How can we quantify the relationships among changes in global-mean rainfall, extreme rain rate, and the rest of the distribution of rain?

Daily precipitation data

- Rain rate in mm/day
- Climate model simulations

 CMIP5 Carbon dioxide increase (1pctCO2)
 22 models
- Observations
 - Global Precipitation Climatology Project (GPCP) 1 Degree Daily
 - 1997-2012

Methodology

 Calculate both rain frequency and rain amount distributions

- Average globally
- Dry threshold of less than 0.1 mm/d

• Logarithmic rain rate axis

Rain distribution

Models vary in their fidelity to observations

Rain amount

How could the distribution of precipitation change?

 It could rain more often (and be dry less often)

Increase mode

 Rain frequency and amount increase by the same fraction at all rain rates

$$p'(\ln r) = (1+a)p(\ln r)$$

$$f'(\ln r) = (1+a)f(\ln r)$$

• Total rain increases

How else could the distribution of precipitation change?

It could rain harder

Shift mode

• The same amount of rain falls at higher rain rates

$$p'(\ln r) = p(\ln r - b)$$

$$f'(\ln r) = e^{-b}f(\ln r - b)$$

Total rain does not change

log(Rain rate)

Shifts in space

IPCC AR5 WG1 Fig. 12.41

Multi-model mean rain distribution response to CO₂ increase

Fit the shift and increase modes

Best fit shift-plus-increase

Repeat for every model

Average of models

- Shift 3.3 %K⁻¹
- Increase 1.1 %K⁻¹

Change in extreme rain: Multi-model mean response to CO₂ increase

Models have different responses

Extreme mode falls as resolved precipitation

Conclusions

- Most of the increase in total rainfall in response to global warming comes as the increase mode – a uniform increase at all rain rates.
 - Some of the rest comes from the extreme mode, which occurs in only some models.
- The increase in extreme rain occurs as a shift of the distribution to higher rain rates in some models
 - In other models it occurs as an extreme mode.

Read more:

- Submitted to Journal of Climate
 - Drafts at www.atmos.washington.edu/~angie

Acknowledgements:

 Dennis Hartmann, University of Washington, NSF funding

Email: apgrass@ucar.edu