Were past warmings in the western US associated with drier conditions? A paleo-model-data comparison

> Corinne I Wong¹, Gerald L. Potter², Isabel P. Montanez¹, Bette L. Otto-Bliesner³, Pat Behling⁴, Jessica L. Oster⁵

¹UC Davis, ²NASA, ³NCAR, ⁴Univ. Wisconsin, ⁵Vanderbuilt Univ.

NOAA

The drought in California as seen from space. The lack of snow at Lake Tahoe and in the Sierras is pronounced.

NBC DAY AREA

Ridiculously Resilient Ridge

California Weather Blog

brought to you by Weather West

Forecasted declines in water availability

Average AMJ change in P-E for 2021-2040 minus 1951-2000 across CMIP5 models

Seager et al., 2012

Research Question

What climate processes control the response of precipitation to changes in temperature?

- Reconstruction of moisture conditions from distinct warm and cool intervals
- Paleoclimate modeling to test hypotheses about teleconnections

Paleoclimate model approach

Younger Dryas Cold Stadial Bølling Warm Interstadial 65N 65N 60N 60N 55N 55N 50N 50N 45N 45N 40N 40N 35N 35N 30N-30N 25N 25N 20N 20N 15N 15N 190E 200E 210E 220E 230E 240E 250E 260E 190E 200E 210E 220E 230E 240E 250E 260E 0 2 5 8 9 10 з 4 6 7 0.5 1.5 2.53.54.5 5.5 6.5 7.5 8,5 9.5

DJF precipitation (mm/d)

Key results

 Intensification of winter storm track during Younger Dryas

No support for existing hypothesis

- Shift of westerlies
- Tropical moisture source

 Northward expansion of storm track during Bølling

Outline

- What teleconnections link N. Atlantic temperature to western US moisture conditions?
- Model approach
- Results
 - Intensification of storm track under cool conditions
 - Northward expansion of storm under warm conditions
 - Variable North Pacific High but no evidence for tropical moisture source

Outline

What teleconnections link N. Atlantic temperature to western US moisture conditions?

- Model approach
- Results
 - Intensification of storm track under cool conditions
 - Northward expansion of storm under warm conditions
 - Variable North Pacific High but no evidence for tropical moisture source

Paleomoisture reconstructions suggest wetter Younger Dryas

Shift of the westerlies hypothesis

Split jet stream during Last Glacial Maximum

Northward storm track shift simulated in scenarios of future warming

Sewall, 2005

Alternative hypothesis Tropical Pacific moisture source

Lyle et al., 2012

Alternative hypothesis – tropical Pacific moisture source variability driven by North Pacific High

Alternative hypothesis – tropical Pacific moisture source variability driven by North Pacific High

Modified from Doose et al., 1995

Outline

- What teleconnections link N. Atlantic temperature to western US moisture conditions?
- Model approach
- Results
 - Intensification of storm track under cool conditions
 - Northward expansion of storm under warm conditions
 - Variable North Pacific High but no evidence for tropical moisture source

Evaluation of model performance

Control simulation of modern conditions

• Comparison to:

- Modern Era Retrospective Reanalysis (MERRA)
- Global Precipitation Climatology Project (GPCP)

Evaluation of model performance: modern precipitation

CCSM3

Observed (GPCP)

Outline

- What teleconnections link N. Atlantic temperature to western US moisture conditions?
- Model approach
- Results
 - Intensification of storm track under cool conditions
 - Northward expansion of storm under warm conditions
 - Variable North Pacific High but no evidence for tropical moisture source

Intensified storm track during Younger Dryas

DJF 850 hPa Eddy Kinetic Energy (m²/s²)

Greater moisture associated with intensified Younger Dryas storm track

DJF precipitation (% difference)

Model winter precipitation

Younger Dryas

Bølling

Stronger high pressure ridge diverts storm track during Bølling

500 hPa geopotential heights (m)

What about tropical moisture source?

Weaker pressure anomalies during Younger Dryas

Stronger summer southerlies during Younger Dryas

JJA 500 hPa meridional wind velocity (m/s)

Greater summer precipitation.....

JJA precipitation (percent difference)

.... But low precipitation amount

Younger Dryas

Bølling

3,5

4.5

JJA precipitation (mm/d)

0.5

Additional finding - evapotranspiration

Annual evapotranspiration difference (% difference)

Additional finding - evapotranspiration

20

40

60

80

0

Ground evaporation differences

-100

-80

-60

-40

-20

Canopy evapotranspiration differences

100

Additional finding - evapotranspiration

Leaf Area Index

Canopy evapotranspiration

Conclusions

- Intensification of storm track can account for wetter YD
- No evidence for storm track migration
- Variability in North Pacific High, but small role of tropical moisture
- Increased evapotranspiration during YD despite cooler temperatures

