Radiative forcing and climate response in CESM/MARC coupled simulations

Alexander Avramov¹, Chien Wang¹, Ho-Jeong Shin², Shao-Yi Lee³

¹Massachusetts Institute of Technology ²Korea Institute of Ocean Science and Technology ³Singapore-MIT Alliance for Research and Technology

> February 11, 2014 CESM AMWG/CMWG Meeting

MARC

- 7 aerosol modes
 - external: NUC, AIT and ACC sulfate; BC and OC
 - Internal
 - MBS BC core coated with sulfate shell
 - MOS uniform mixture of OC shell
- 2 moment scheme mass and number predicted; mixing state of MBS and MOS
- Why doing it again?
 - CAM3 -> CAM5
 - some improvements, mainly in the coupling
 - completely new code
 - add sea-salt and dust (borrowed from BAM)

Coupling to CAM

- CAM sulfur chemistry module SO₄ oxidation
- sedimentation and dry deposition Wang (2004) + "resistance" model adopted from the dust model
- impaction scavenging function of rain/snow mr, Wang (2004)
- nucleation scavenging explicit in stratiform clouds, fixed for shallow and deep convection; aqueous SO₄ release to ACC by cloud droplet/rain evaporation
- cloud droplet activation all but BC allowed to activate as CCN
- aerosol optical properties k, ω , g to RRTMG
- 28 advected scalars "heavier" than MAM3
 - 4 sea salt and 4 dust modes BAM
 - 4 gas-chemistry module
 - 16 MARC m, N of 7 modes + 2 mixing-state variables

Simulation Setup

- Test case what is the RF and how does it depend on the aerosol mixing state
- CESM 1.0.5
 - 5 years long simulations, with and without mixing
 - F configuration: prescribed SST and sea ice
 - emissions 1850, 2000
- Surface emissions BC, OC, biogenic VOCs, SO₂ and SO₄

Model-obs comparisons Surface BC [ng/m³]

Surface SO₄ [μ g/m³]: US

Surface SO₄ [µg/m³] Europe

Surface OC [µg/m³]: Europe

Surface OC [µg/m³]: US

Surface BC [kg/kg]

1E-13	1E-12	1E-11	1E-10	1E-09	1E-08

Surface SO₄ [kg/kg]

1E-12	1E-11	1E-10	1E-09	1E-08

Surface MBS [kg/kg]

1E-13	1E-12	1E-11	1E-10	1E-09	1E-08

Aerosol Loading: AEROCOM models

[Schulz et al., 2006]

AOD: AEROCOM models

[Schulz et al., 2006]

Direct Radiative Forcing AEROCOM models

[Schulz et al., 2006]

MAMx/MARC radiative forcing

[Ghan et al., 2012]

Where do we go next?

- Coupling with CESM 1.2 MG2, CLUBB
- Extensive evaluation of simulations, AMWG diagnostics, "tuning"?
- Droplet activation
- Ice nucleation

Acknowledgments

• Andrew Gettelman, Brian Eaton