Constraints on ecosystem functional responses from atmospheric CO₂

Gretchen Keppel-Aleks University of Michigan

CESM Biogeochemistry Working Group Meeting February 2014

Interannual Variability in Surface CO₂

CESM underestimates variability in CO₂ at 2-10 year timescales.

Phasing of interannual variability in CO₂

CO₂ IAV tracks tropical temperature variability.

Carbon-climate feedbacks and interannual variability

Interannual growth rate in atmospheric CO₂ may constrain the sensitivity of tropical carbon storage to future warming.

Cox et al., 2013

Calculating interannual variability in observations

Interannual variability in CO₂ observations

CO₂ growth rate shows has spatial and temporal patterns.

Building Basis Fluxes for NEE and Fire

Temperature Stress

$$NEE_{\Delta T} = \alpha \cdot NPP_{ann} \left(T - \overline{T_m} \right) \cdot Q_{10}^{\frac{T_m - 20}{10}}$$

Drought Stress

$$NEE_{\Delta P} = \alpha \cdot NPP_{ann} \left(P - \overline{P_m} \right)$$

Fire Emissions

GFED emissions, ATSR Fire Counts

Relatively simple models can account for a high fraction of variability in atmospheric CO₂ growth rate.

Modeling variability with multiple drivers

Fire, with a strong anthropogenic component, contributes significantly to variability in all latitude bands.

What can we say about climate sensitivity?

Model Case	Sensitivity factor
Tropical NEE response to temperature	$3.9 \pm 0.9 \text{ Pg C y}^{-1} \text{K}^{-1}$
Tropical NEE response to temperature, accounting for fires	$2.9 \pm 0.9 \text{ Pg C y}^{-1} \text{K}^{-1}$
Tropical NEE response to drought	$-1.1 \pm 0.3 \text{ Pg C y}^{-1}$
Tropical NEE response to drought, accounting for fires	-0.8 ± 0.3 Pg C y ⁻¹

Accounting for fire emissions reduces the apparent climate impact of tropical NEE, inferred from atmospheric observations.

Cox et al., 2013

Are we attributing variability to the right mechanisms?

Degree to which observations are averaged can affect our mechanistic interpretation of sources of variability.

Sensitivity from land vs atmospheric diagnostics

Using model-derived atmospheric, rather than land, carbon anomalies damps the apparent climate sensitivity.

Modeling variability with global fluxes

Discussion and Conclusions

Including the proper mechanisms to account for carbon cycle variability is necessary for a prognostic ESM.

Temperature, drought, and fire covary, with contributions from drought and fire dominating CO₂ IAV.

Method of calculating diagnostics for climate sensitivity is crucial for developing consistent constraints