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Interannual Variability in Surface CO2

CESM underestimates variability in CO2 at 2-10 year timescales.
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Phasing of interannual variability in CO2 
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Carbon-climate feedbacks and interannual 
variability

Interannual growth rate in atmospheric CO2 may constrain the 
sensitivity of tropical carbon storage to future warming.

ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.
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Calculating interannual variability in observations
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Interannual variability in CO2 observations

360

380

400
a

60
−9

0 
N

CO2 [ppm]

−3

0

3

CO2 IAV [ppm]

 

 
g

alt
brw
ice
zep

360

380

400
b

23
−6

0 
N

−3

0

3

 

 
h

azr
bmw
key
mhd
mid
pocn25
shm

360

380

400
c

00
−2

3 
N

−1

0

1

 

 
i

chr
gmi
kum
pocn05
pocn10
pocn15
pocn20
rpb

360

380

400
d

00
−2

3 
S

−1

0

1

 

 
j

asc
pocs20
pocs15
pocs10
pocs05
sey
smo

360

380

400
e

23
−6

0 
S

−1

0

1

 

 
k bhd

cgo
crz
pocs35
pocs30
pocs25

98 00 02 04 06 08 10 12

360

380

400
f

60
−9

0 
S

Year
98 00 02 04 06 08 10 12

−1

0

1

Year

 

 
l

hba
psa
spo
syo

CO2 growth rate shows 
has spatial and 
temporal patterns.



Building Basis Fluxes for NEE and Fire
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Global fingerprints from fluxes with 1 Pg C y-1 variance

Climate-mediated 
processes leave 
fingerprints on 
atmospheric CO2.
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Fire, with a strong anthropogenic component, contributes significantly to 
variability in all latitude bands.
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What can we say about climate sensitivity?

Accounting for fire emissions 
reduces the apparent climate 
impact of tropical NEE, inferred 
from atmospheric observations. 

ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.

LETTER RESEARCH

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 3

Macmillan Publishers Limited. All rights reserved©2013

C
lim

at
e 

Im
pa

ct
 [G

t C
 K

-1
]

Interannual CO2 growth rate             
[Gt C y-1 K-1]

Model Case Sensitivity factor 
Tropical NEE response to temperature 3.9 ± 0.9 Pg C y-1 K-1  
Tropical NEE response to temperature, accounting for fires 2.9 ± 0.9 Pg C y-1 K-1  
Tropical NEE response to drought -1.1 ± 0.3 Pg C y-1 
Tropical NEE response to drought, accounting for fires -0.8 ±0.3 Pg C y-1 
 



Are we attributing variability to the right mechanisms?

Degree to which 
observations are 
averaged can affect 
our mechanistic 
interpretation of 
sources of variability. 
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Sensitivity from land vs atmospheric diagnostics
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Modeling variability with global fluxes
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Including the proper mechanisms to account for carbon 
cycle variability is necessary for a prognostic ESM. 

Temperature, drought, and fire covary, with 
contributions from drought and fire dominating CO2 
IAV.

Method of calculating diagnostics for climate sensitivity 
is crucial for developing consistent constraints

Discussion and Conclusions


