CAM angular momentum conservation on slow rotators

or

trials and tribulations with the Titan CAM

Erik Larson University of Colorado Whole Atmospheres Working Group meeting Feb. 12, 2014

Titan background

- 2575 km radius
- 16 earth day rotation -> cyclostrophic balance
- 1.5 bar surface pressure, 95% N₂ 5% CH₄
- 9-11 AU -> 93K surface temperature
- 1 Titan year = 30 Earth years -> comp. expensive
- 26 degree axial tilt -> seasons
 - Thick atmospheric haze heats stratosphere,
 - obscures surface at visible wavelengths

Superrotation with 200m/s jets

IIIII I

IIIII

THILL I

-90

State of the Titan CAM 2009

(Friedson et al. 2009)

What's causing the lack of zonal winds?

Guess

- Improper heating/cooling
- Gravity wave parameterization
- Sponge layer
- Numerical diffusion
- Surface stresses
- Topography
- Dynamical core

Attempted fix

- Add realistic aerosol heating and cooling - CARMA
- Adjust or remove
- Reduce sponge layer diffusion
- Test higher resolution (4x5)
- Reduce surface drag
- Include realistic Cassini based topography
- Try other cores (unsuccessful)

None of these greatly improved the zonal wind speed or superrotation with the possible exception of higher resolution

Other GCMs produce fast zonal winds

Finally, we just forced the zonal winds

Lebonnois et al. 2012 - Angular momentum budget in General Circulation Models of superrotating atmospheres: A critical diagnostic

D

Dy

 ϵ

 ϵ^*

Σ

 F^+

 F^{-}

 T^+

 T^{-}

ξ

1						
	$\overline{T^+}$	$\overline{T^{-}}$	$\overline{F^+}$	$\overline{F^{-}}$	$\overline{\epsilon^*}$	ξ
LMDIN	0.	0.	10.23	-0.74	-6.79	0.66
LMDIT	28.13	-29.86	4.83	-3.26	1.24	0.04
LMDFN	0.	0.	0.50	-0.94	-0.66	0.70
LMDFT	30.73	-30.09	2.19	-6.24	3.54	0.10
IN2S	0.	0.	0.94	-0.24	-6.54	6.96
IN4S	0.	0.	1.74	-0.	-5.13	2.95
IN4R10	0.	0.	0.26	-0.33	-0.75	2.27
IN4R30	0.	0.	0.13	-0.79	-1.06	1.34
IN42R10	0.	0.	0.24	-0.43	-1.32	3.07
I0N42R10	0.	0.	0.59	-0.12	4.07	6.90
IT2S	273.9	-241.6	0.17	-0.07	-30.92	0.11
IT4S	216.1	-330.6	0.23	-0.06	116.52	0.35
IT4R10	267.5	-267.1	0.23	-0.07	3.18	0.01
IT4R30	274.2	-255.8	0.23	-0.07	-15.08	0.05
IT42R10	263.9	-269.8	0.23	-0.07	9.23	0.03
I0T42R10	265.0	-264.5	0.22	-0.07	3.19	0.01
TITAN	0.	0.	34.3	-24.9	-6.63	0.19
EIN2S	0.	0.	98.8	-87.8	-11.33	0.12
EIN4S	0.	0.	101.4	-90.3	-11.60	0.11
EIN4R10	0.	0.	102.7	-85.2	-18.17	0.18

^aThe dimensionless ratio ξ is defined in the text. Units (other than ξ) are 10^{18} kg m² s⁻² for Venus and the Earth, 10^{15} kg m² s⁻² for Titan.

^aThe overbar indicates a time average over the whole simulation.

How well does CAM conserve angular momentum?

(sponge layer)
Residual torque due to conservation
errors in the horizontal dissipation
parameterization
Total variation of AAM in the
dycore of the GCM
Residual numerical rate of AAM
variation due to conservation
errors in the dycore
$=S + D + \epsilon$, should theoretically
be zero
=F + Dy, should be equal to
dM_{r}/dt
Positive (source) part of the
friction torque
Negative (sink) part of the
friction torque
Positive (source) part of the
mountain torque
Negative (sink) part of the
mountain torque
Ratio between $\left \overline{\epsilon^*}\right $ and Max
$\left(\overline{T^+}+\overline{F^+},\left \overline{T^-}+\overline{F^-} ight ight)$

Temperature gradients and winds

Forcing temperature induces superrotation

Conversely:

Forcing the wind induces a temperature gradient

Future attempts to produce superrotation with the Titan CAM

• Limit meridional wind at top of model?

• Move to CAM5 with other dyn cores?

• Very high resolution (1x1)?

Other ideas?

Titan – slow rotator

Lack of superrotation (Friedson et al. 2008)

Things tried:

- aerosol forcing
- gravity wave parameterization
- surface friction
- sponge layer at the top of the model
- topography
- artificial forcing allows temperature gradients to form
- 2 other models are able to reproduce the superrotation
- LMD
- Planet-WRF

Why not CAM3? Lebonnois et al. 2012 – CAM does not conserve angular momentum

CAM5?

Venus and Earth?

 By forcing the winds, we are creating a momentum barrier to the strong meridional winds at the top of our model that redistribute heat and destroy temperature gradients