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Overview
CAM-SE:

e New default time-stepping
e Axial angular momentum conservation
e Physics-grid and CSLAM transport

e Capability of doing offline simulations driven by

meteorological analysis for chemistry applications

Leaving out lots of HOMME development:
non-hydrostatic DG (R.D. Nair & R. Kloefkorn), non-hydrostatic SE
(R.D. Nair & D. Hall), implicit time-stepping (K. Evans), ...

Other:
 Energy definition in CAM (covered by D.L. Williamson)

 Nudging (“on the physics time-step”) — J.T. Bacmeister
e MPAS in CAM
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e tstep type=>5:
Switched to a 5-stage Runga-Kutta time-stepping;

g Scientific Discovery through
Advanced Computing

Trunk changes to time-stepping

based on Kinnmark and Gray (1984) with a modification (Ullrich; unpublished) to

make it non-linearly 379-order in time (implemented by M.A. Taylor)

e User confusion on CAM namelist:

(e.g., split namelist variables do not mean the same thing in CAM-SE as CAM-FV)
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http://www.cgd.ucar.edu/cms/pel/software/cam-se-dt-table.pdf

- assuming Lagrangian vertical coordinate
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g Scientific Discovery through

SEmErt o Axial angular momentum analysis

Held-Suarez forcing (flat Earth => no mountain torque)

CAM-FV: finite-volume (Lin, 2004) dynamical core in CAM

Axial Angular Momentum (AAM) diagnostics for CAM-FV
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Scientific Discovery through

Axial angular momentum analysis

Held-Suarez forcing (flat Earth => no mountain torque)

CAM-SE results:

Total torque due to dyn
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‘ Separating physics and dynamics grids

Current physics/“coupler” grid Finite-volume equi-angular gnomonic grid
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Separating physics and dynamics grids
6 month+ of re-engineering of CAM history output .... (S. Goldhaber)

Main tasks:

- enable output on an arbitrary physics grid (different from dynamics grid)

- remove assumptions in physics assuming dynamics-physics points co-located
- interface code for SE stored entire grid on every MPI task — fixed! (should help
scalability on small memory massively parallel machines)

- dp_coupling is now able to support physics grid

- tools to create IC files with different grids in one file

Current physics grid is equal-area finite-volume-type grid in each element
(support coarser, finer, or similar resolution within each element)
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Advanced Computing

scibAC  Held-Suarez runs with
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Separating physics and dynamics grids
6 month+ of re-engineering of CAM history output .... (S. Goldhaber)

Main tasks:

- enable output on an arbitrary physics grid (different from dynamics grid)

- remove assumptions in physics assuming dynamics-physics points co-located
- interface code for SE stored entire grid on every MPI task — fixed! (should help
scalability on small memory massively parallel machines)

- dp_coupling is now able to support physics grid

- tools to create IC files with different grids in one file

Current physics grid is equal-area finite-volume-type grid in each element

Todo:

-flush out bugs ...

- longer term: generalize mapping to support arbitrary physics grids
(for example, this will support mesh-refinement in the dynamical core and run physics
on a uniform resolution grid)

- enforce total energy conservation in mapping process
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Scientific Discovery through
¥ Advanced Computing

Multi-tracer transport (CSLAM) in CAM-SE

- Stand-alone Lagrangian CSLAM scheme has been in HOMME for a while
(Erath et al. 2012); also other option: SPELT (Erath and Nair, 2014)

(a) (b) Computing

J,/)H S J@ overlap areas
Ay is expensive

/ﬂ
long time-steps Ay but weights
] )} o < can be re-used
=> |less MPI for each
communication additional
|

| tracer

Allows for

Fig. 1. A schematic illustration of concepts used in the semi-Lagrangian finite-volume scheme. (a) The deformed departure cell a, (dark shaded area) ends
up, after being transported by the flow for one time-step, at the regular arrival cell A; (light shaded area). The trajectories for the cell vertices are shown
with arrows, and the departure and arrival cell vertices are marked with filled and open circles, respectively. (b) [llustrates the overlap region between the
grid cell A; and the departure cell a; referred to as ay, used for the upstream integral computation given in Eq. (4).
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& Scientific Discovery through
% Advanced Computing

Multi-tracer transport (CSLAM) in CAM-SE

Now that physics grid infrastructure is maturing we can start focusing on CSLAM
transport (CSLAM scheme is using a finite-volume (quasi equal-area) grid and needs
new physics grid infrastructure in CAM)

SE (np=4) CSLAM (nc=4)
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Now that physics grid infrastructure is maturing we can start focusing on CSLAM
transport (CSLAM scheme is using a finite-volume (quasi equal-area) grid and needs
new physics grid infrastructure in CAM)

- Stand-alone Lagrangian CSLAM scheme has been in HOMME for a while

(Erath et al. 2012). However, Erath et al. (2012) did not consider coupling with
CAM-SE air density

- To couple CSLAM scheme with CAM-SE we are using a conventional flux-form
methodology (used in, for example, CAM-FV):

- convert Lagrangian CSLAM to flux-form (90% done in HOMME; Lauritzen)
- compute finite-volume type fluxes from CAM-SE
(method derived by Taylor and Ullrich)

NCAR-Sandia is working on uniform resolution implementation (Lauritzen-Taylor)
Argone-Sandia are working on variable resolution implementation (PI: F. Hoffman)
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Capability for doing offline simulations driven by
(GEOS5) meteorological analysis in CAM-SE

focus: chemistry applications
J.-F. Lamarque (PI), F. Vitt, A. Conley, P.H. Lauritzen

Current method in CAM-FV (CAM-Chem): Overwrite u,v,T,PS at every physics time-step
and apply mass-fixer (directionally biased) to enforce consistency between internal
mass-fluxes and driving data
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Capablllty for doing offline simulations driven by
(GEOS5) meteorological analysis in CAM-SE

focus: chemistry applications
J.-F. Lamarque (PI), F. Vitt, A. Conley, P.H. Lauritzen

Method implemented in CAM-SE:
- Apply nudging to u,v, T (not PS)

- The nudging is implemented as a forcing term inside the dynamical core
(at every Runga-Kutta step the dynamical core “feels” the nudging)

Does it work? Is PS nudged towards offline PS?

Idealized test:

Initial condition: Polvani baroclinic wave at time T=10 days

Force it to time-evolving solution starting from day O SRR rr—
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- Temporal resolution of meteorology is the largest error

- If you nudge weaker you get better results (time evolution is not linear).

- Updating nudging term every dynamics time-step (linear temporal interpolation
between met field updates) only improves results if met fields are updated hourly
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Scientific Discovery through
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- Temporal resolution of meteorology is the largest error

- If you nudge weaker you get better results (time evolution is not linear).
- Updating nudging term every dynamics time-step (linear temporal interpolation
between met field updates) only improves results if met fields are updated hourly
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Filled contours: CAM-SE
Black contours: CAM-FV
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.C. Skamarock
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Slide from

Nonhydrostatic MPAS-Atmosphere
dynamical core port to CAM
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A SciDAC .
Qe s s Axial angular momentum

/ In the absence of any surface torque and zonal mechanical forcing, the hydrostatic\
primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood, 2003]:

dM
= =o. 2
o =0 (2)

%

ﬂypically numerical models are divided into a dynamical core (dyn) that, roughly Speah

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

- wo() (o), 0

. dM dM
In the absence of mountain torque: 0~ (dt> < <dt> .
dyn phys
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A simple way to assess
axial angular momentum conservation

Held-Suarez forcing: flat-Earth (no mountain torque), physics replaced by simple
boundary layer friction and relaxation of temperature toward reference profile
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