



**Representing human influence in CESM: Global testing of a river routing and water management** 

L. Ruby Leung<sup>1</sup>, Hongyi Li<sup>1</sup>, Nathalie Voisin<sup>1</sup>, Maoyi Huang<sup>1</sup>, Augusto Getirana<sup>2</sup>, Duane Wards<sup>1</sup>, Teklu Tesfa<sup>1</sup>, Huan Wu<sup>3</sup>, Yubin Xu<sup>4</sup>, and Jiali Guo<sup>5</sup>

<sup>1</sup>Pacific Northwest National Laboratory
<sup>2</sup>NASA GSFC
<sup>3</sup>University of Maryland
<sup>4</sup>Peking University
<sup>5</sup>Wuhan University

# Human activities can influence the water cycle directly



- Globally, about 15% of the total annual river runoff is stored behind dams (Gornitz, 2000)
- Agriculture consumes about 87% of global fresh water withdrawal by humans
- Irrigation increases water vapor flows from land by comparable amount as reduction by deforestation globally (Gordon et al. 2005)

#### **Global reservoirs**



**Global irrigation areas** 



# Modeling the effects of water use and water management



Improve and add new capabilities in Community Land Model (CLM) to represent hydrology and human – water cycle interactions in Earth System Model



## Model for Scale Adaptive River Transport



Proudly Operated by Battelle Since 1965



- Hillslope routing accounts for event dynamics and impacts of overland flow on soil erosion, nutrient loading, etc.
- Sub-network routing: scale adaptive across different resolutions to reduce scale dependence
- Main channel routing: explicit estimation of in-stream status (velocity, water depth, etc).

(Li et al., JHM, 2013)

# **Global testing of MOSART**



- CLM-MOSART driven by 4 global atmospheric forcing datasets (all 3-hourly and at 1° resolution) to evaluate uncertainty due to forcing inputs
  - I2000 NCAR benchmarking forcing
  - Princeton forcing: rescale precipitation to match GPCC
  - Princeton forcing: Rescale precipitation to match GPCP
  - Similar to GPCC, but with HOP data for the Amazon
- CLM-MOSART driven by I2000, but with 5 variations of model structure to evaluate their impacts
  - All MOSART features
  - Turn off within grid routing
  - Further set channel velocity constant in time
  - Further set channel velocity constant in space (~0.21 m/s)
  - Channel velocity = 0.35 m/s from RTM

## **Impacts of model structure**





Within grid routing has small effects All other factors, temporal and spatial variability of channel velocity and values of constant channel velocity, are important and affect timing of streamflow

- Temporal variability appears most important
  - Effects seem to be larger in snow melt driven basins

#### Mean annual flow

Mean annual maximum flood





- Model structure does not affect mean annual flow, but its effects on annual maximum flood are very clear
- Reducing temporal and spatial variability of channel velocity generally reduces flood peak
  - Using a higher constant value of channel velocity (0.35 vs 0.21) leads to higher flood peak

## Impacts of atmospheric forcing





Forcing uncertainty has larger impacts on mean annual flow

- Forcing mostly affects monthly peak rather than timing
- Statistical tests indicate that only simulation driven by GPCP is statistically different from others

### **A reservoir model for Earth System Model**



9

#### Generic operating rules

#### (Voisin et al. HESS, 2013)

- Each reservoir has multiple purposes, separated into either: i) Flood control and other, ii) Irrigation, or iii) Joint irrigation and flood control
- Generic Release targets\* and storage targets\*\* for each purpose
- Configured independently for each reservoir based on hydro-climatological conditions and demand associated with the reservoir

- No optimizer
- No forward simulation
- Large scale global
- \* Hanasaki et al. 2006, 2008 Doell et al. 2009
- \* Biemans et al. 2011
  \*\* Voisin et al. 2013



Monthly release targets at Grand Coulee for different rules scenarios

## **Global reservoirs and primary purposes**



Proudly Operated by Battelle Since 1965



1,164 reservoirs; 1,425,577 Million Cubic Meters



472 reservoirs; 762,924 Million Cubic Meters





- Evaluate global simulations with in situ and satellite data
- What sources of uncertainty can be reduced using satellite observations?

## **Reservoirs used in model evaluation**



Proudly Operated by Battelle Since 1965



## Evaluate WM Reservoir Storage Simulations

Proudly Operated by Battelle Since 1965



- Lack seasonal variations
- Lack interannual and decadal variations
- Lack water transfer between basins

WM

OBS

# Cascade of uncertainties: opportunities for data to inform models

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Ballelle Since 1965



### **Comparison of WM simulated storage with insitu and satellite observations**



OBS

SATE

- MODIS : imagery, observations of reservoir extent over time (Gao et al. 2012 WWR)
   ENVISAT: altimetry, observations of height of water over time
- Derive area-elevation relationship: time series of reservoir storage



Good agreement between satellite and observations

### Simulations can be improved by defining reservoir storage targets based on satellite data









## Summary



- Enabled by comprehensive hydrography datasets, MOSART can be applied globally at multiple resolutions
- Temporal and spatial variability of channel velocity has large influence on timing of streamflow and annual maximum flood – simulation differences due to model structure uncertainty are all statistically significant
- Forcing uncertainty for the datasets examined affects mainly mean annual flow, and GPCP is an outlier compared to other datasets
- Previously tested over the Columbia River Basin, WM has now been applied globally at 0.5 degree resolution using generic reservoir operating rules
- Several sources of uncertainty have been identified in the WM simulations – satellite data can be used to constrain storage for large reservoirs

### **Modeling stream temperature in MOSART**



Water temperature in tributary channels



# A comprehensive global hydrography database



- Topographic parameters derived from HydroSHEDS DEM, including flow direction, channel length and slope etc. (Huan Wu at UMD)
- Manning's roughness derived for overland and channel flow separately based on land cover (Augusto Getirana at NASA)
- Channel width and depth derived based on empirical Hydraulic Geometry relationships (Augusto Getirana at NASA)
- All parameters available at 1/16, 1/10, 1/8, ¼, ½, 1 and 2 degree resolutions

Wu et al., WRR, 2012; Getirana et al., JHM, 2012