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Human activities can influence the
water cycle directly PSR I
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» Globally, about 15% of the total annual river runoff is stored
behind dams (Gornitz, 2000)

» Agriculture consumes about 87% of global fresh water
withdrawal by humans

» lrrigation increases water vapor flows from land by comparable
amount as reduction by deforestation globally (Gordon et al.
2005)

Global reservoirs Global irrigation areas

1950-2004 mean annual flow (cms) Il 251 - 1,000

1-100 m.o s Lehner et al. 2008 Siebert et al. 2005 2



Modeling the effects of water use and

water management
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» Improve and add new capabilities in Community Land Model (CLM) to represent
hydrology and human — water cycle interactions in Earth System Model
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Model for Scale Adaptive River Transport hw
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Real river network .
Conceptualized

—— Tributary network ,

™ —— Main channel

» Hillslope routing accounts for event dynamics and impacts of
overland flow on soil erosion, nutrient loading, etc.

» Sub-network routing: scale adaptive across different resolutions to
reduce scale dependence

» Main channel routing: explicit estimation of in-stream status
(velocity, water depth, etc).

(Li et al., JHM, 2013)



Global testing of MOSART 7/
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» CLM-MOSART driven by 4 global atmospheric forcing
datasets (all 3-hourly and at 1° resolution) to evaluate
uncertainty due to forcing inputs

M 12000 NCAR benchmarking forcing

B Princeton forcing: rescale precipitation to match GPCC
B Princeton forcing: Rescale precipitation to match GPCP
M Similar to GPCC, but with HOP data for the Amazon

» CLM-MOSART driven by 12000, but with 5 variations of
model structure to evaluate their impacts
M All MOSART features
B Turn off within grid routing
B Further set channel velocity constant in time
B Further set channel velocity constant in space (~0.21 m/s)
B Channel velocity = 0.35 m/s from RTM



Impacts of model structure
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Within grid routing
has small effects

All other factors,
temporal and spatial
variability of channel
velocity and values
of constant channel
velocity, are
important and affect
timing of streamflow

Temporal variability
appears most
important

Effects seem to be
larger in snow melt
driven basins



Mean annual flow

Mean

annual maximum flood
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» Model structure does not
affect mean annual flow,
but its effects on annual
maximum flood are very
clear

Reducing temporal and
spatial variability of
channel velocity
generally reduces flood
peak

Using a higher constant
value of channel velocity
(0.35vs 0.21) leads to
higher flood peak



Impacts of atmospheric forcing
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» Forcing uncertainty
has larger impacts
on mean annual
flow

Forcing mostly
affects monthly
peak rather than
timing

Statistical tests
indicate that only
simulation driven by
GPCP is statistically
different from others



A reservoir model for Earth System Model Peific Norttwest
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» Generic operating rules (Voisin et al. HESS, 2013)

B Each reservoir has multiple purposes, separated into either:
1) Flood control and other, ii) Irrigation, or iii) Joint irrigation and flood control

B Generic Release targets* and storage targets** for each purpose

B Configured independently for each reservoir based on hydro-climatological
conditions and demand associated with the reservoir
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Global reservoirs and primary purpoSes racific Northwest
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Irrigation Irrigation + Flood control
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» Evaluate global simulations
with in situ and satellite data

>~ What sources of uncertainty
can be reduced using

. satellite observations?
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Reservoirs used in model evaluation reiicorwes:
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Dam B o Fort Peck
Colorado »» Reservoir:
River (Lake 2 Missouri River
ar 3
Powell) 23.6 k.m
25.1 km3 Ji.  capacity
capacity. 5. Combined
Irrigation (gui-.ll OPEration
rules : rules
Hoover Dam
Hoover Dam (Lake Mead)

Colorado River ( Lake Mead)
36.7 km?3 capacity

Oahe Reservoir:
Missouri River

Irrigation rules | R 1 A :
g : S — N— . T . 29.1 km3 capacity
1950-2004 mean annual flow (cms) [l 101 - 200 Combined operation rules
[ Jo B 201 - 500
B 1 - 10 I 501 - 151,000 "

[ 11 - 100 A reservoir



Evaluate WM Reservoir Storage Simulation Sue s
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Storage ( million cubic meter)
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» Lack seasonal variations

WM
OBS

» Lack interannual and decadal variations
» Lack water transfer between basins
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Cascade of uncertainties
data to Inform models

Errors in hydrologic simulations
(model, forcing)
=== VIC with station-based forcing
CLM with GFDL forcing

. opportunities for
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Errors in water demand (space, time, type)
Irrigation demand from IAM

~ lrrigation demand from ESM

= Total water demand from IAM

21000 4
18000

Fort Peck Same total demand (TAM]_

15000 -
12000 A

A £\ ~\
ANVl
(A \

9000

1000
8000
5000 A

Storage (million m3)

2000

21000 | ~Same CLM flow forced wit GFDL
— 18000 Fort PeCk - B
(49} PA P
g s000{ . A W 2 /*J
C 12000 /\//\ﬁ/-\f[\/j/\ffm \v‘\//\//
(@] /
= 9000 : . — : S — :
E 87 8 89 90 91 92 93 94 95 95 97 98 99
O 21000 ]
Qo
© 18000
S
O 15000 { .
= ~
U 12000

9000 : : : :

95 95 97

91 92 93 94

9000

87 88 S0 91 92 93 94 95 96 97 98

Bias, seasonality, decadal variability

IAM = integrated assessment model

L I L L L 1 L

8000 -
Grand Coulee

6000
4000 H

Storage
(million m3)

n
o
o
o

0 T
1 2 3 4 5 6 7 8 9 1011 12

99

87 88 89 90

seasonality, Inter-annual variability

ESM = Earth system model

Errors in reservoir operations
Irrigation rules

|~ Flood Control rules
| = Combined Irrigation and Flood Control rules



Comparison of WM simulated storage with in- 7
situ and satellite observations
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» MODIS : imagery, observations of reservoir extent over time  (Gao et al. 2012 WWR)
» ENVISAT: altimetry, observations of height of water over time
» Derive area-elevation relationship: time series of reservoir storage
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Simulations can be improved by defining ~7

Pacific Northwest

reservoir storage targets based on satellite data
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» Enabled by comprehensive hydrography datasets, MOSART
can be applied globally at multiple resolutions

» Temporal and spatial variability of channel velocity has large
Influence on timing of streamflow and annual maximum flood
— simulation differences due to model structure uncertainty
are all statistically significant

» Forcing uncertainty for the datasets examined affects mainly
mean annual flow, and GPCP is an outlier compared to other
datasets

» Previously tested over the Columbia River Basin, WM has
now been applied globally at 0.5 degree resolution using
generic reservoir operating rules

» Several sources of uncertainty have been identified in the
WM simulations — satellite data can be used to constrain
storage for large reservoirs 16



Modeling stream temperature in MOSART 7
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Water temperature in tributary channels
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A comprehensive global hydrography s
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» Topographic parameters derived from HydroSHEDS
DEM, including flow direction, channel length and
slope etc. (Huan Wu at UMD)

» Manning’s roughness derived for overland and
channel flow separately based on land cover
(Augusto Getirana at NASA)

» Channel width and depth derived based on empirical
Hydraulic Geometry relationships (Augusto Getirana
at NASA)

» All parameters available at 1/16, 1/10, 1/8, ¥, Y2, 1
and 2 degree resolutions

Wu et al., WRR, 2012: Getirana et al., JHM, 2012
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