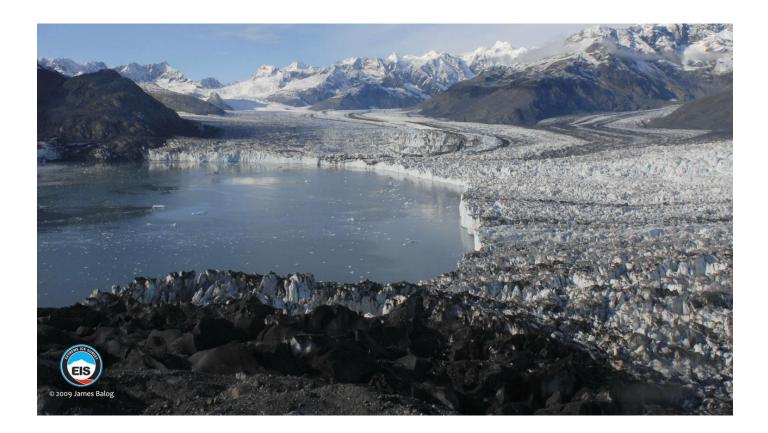
Ill-Posed Glacier Volume Estimation

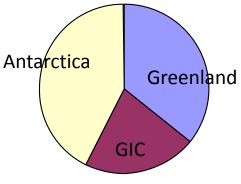
AKA: Please Don't Shoot the Messenger



David Bahr INSTAAR University of Colorado

Who Gives A Rat's Derriere About GIC Volume?

- 200,000+ glaciers and ice caps (GIC), but we only have measured volumes for about 100. Ouch.
- GIC will contribute about 1/3 of SLR over next 100 years.
- GIC are a leading term in today's sealevel rise.
- Can't predict their contribution to SLR if we don't know their volume.

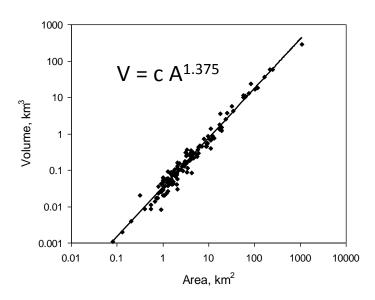


Approx. SLR contributions from ice over next 100 years

So How Do We Calculate Volume?

• Volume-Area Scaling

- Cute, simple, direct.
- Imprecise? (Stay tuned!)
- Numerical Inversions
 - Complex but versatile.
 - Hard to model 200,000+ glaciers, but it has been done!
 - Huss and Farinotti, 2012
 - Presumably more precise?



$$h_{i} = \sqrt[n+2]{\frac{(1-f_{\rm sl})\cdot q_{i}}{2A_{\rm f}(T)}} \cdot \frac{n+2}{\left(F_{\rm s,i}\rho g\sin\overline{\alpha_{i}}\right)^{n}},$$

Which Approach is More Accurate?

Modeling Versus Scaling

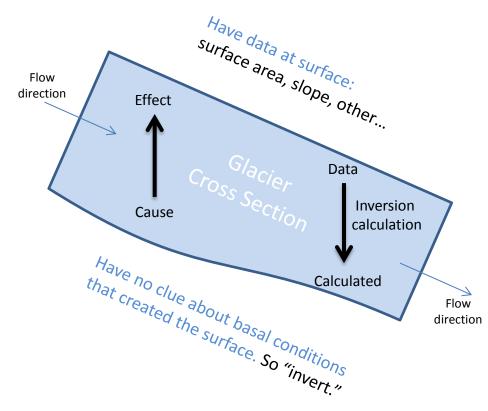
- Neither.
 - (Please don't shoot the messenger.)

• Both.

- They give darn near the exact same accuracy and precision.
- Can prove it.

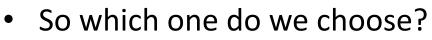
The Problem? Mathematical Inversion

- Basal conditions drive the surface conditions.
 - Slip at the bed determines velocity at surface.
 - Topography at bed causes bumps on the surface.
- So use observed "effect" to derive the "cause."
 - Backwards!
- Called an inversion.

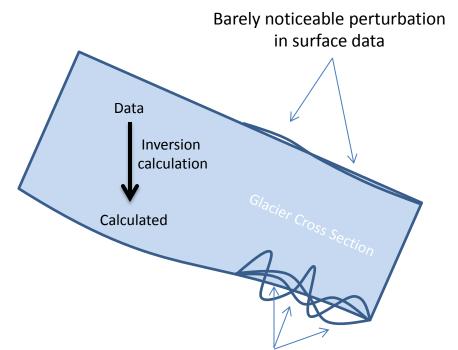


Cloud of Solutions

- Lots of bed conditions correspond to the same surface.
 - Different velocities, stresses, topographies...
 - Think of glacier as the viscous equivalent of a sponge. Wiggle the bottom of the sponge and will barely see it at the surface.



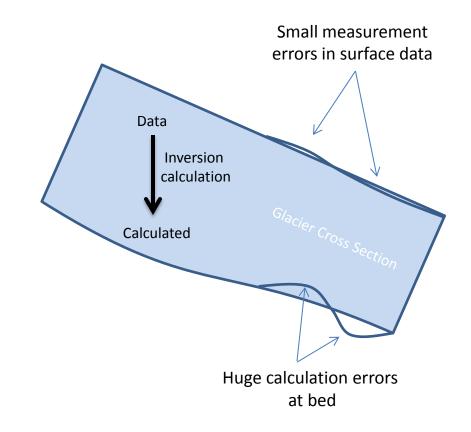
• All fall within the measurement errors at surface.



Which basal solution do we choose? All are consistent with the same surface!

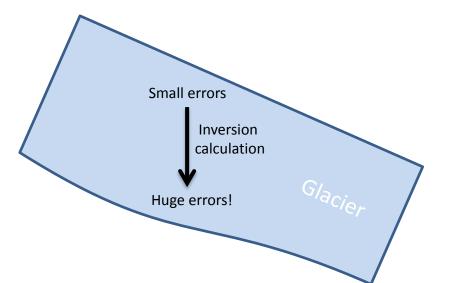
Unstable Solution!

- Small errors in surface data translate to huge calculation errors at the bed.
 - Unstable.
- Note: We assume that nothing whatsoever is known about the bed.
 - This is the case for most GIC.
 - For ice sheets we often know basal topography and that can be a game changer.



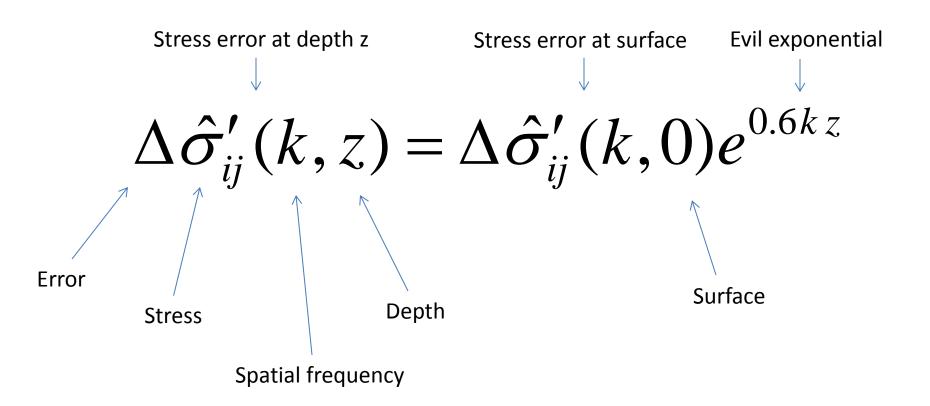
Glacier Inversion is Ill-Posed

- Numerical inversions are often "ill-posed."
 - This does *not* mean we set up the problem incorrectly.
 - Most geophysical inversions are ill-posed.
- Ill-posed means the solution is unstable or not unique.
 - A cloud of possible solutions.
 - Mathematically impossible to pick the correct one.



Balise and Raymond (1985), Lliboutry (1987), MacAyeal (1993), Bahr et al (1994), Truffer (2004), Chandler et al (2006), and many more!

III-Posed Errors Grow Exponentially



The ^ means Fourier-transformed to spatial frequency domain.

From Bahr et al (1994).

Worst at High Frequency And Deep Depths

 $\Delta \hat{\sigma}'_{ii}(k,z) = \Delta \hat{\sigma}'_{ii}(k,0)e^{0.6kz}$

Exponential is huge at large k and z.

Exponential is small at small k.

Want $0.6k z \ll 1$.

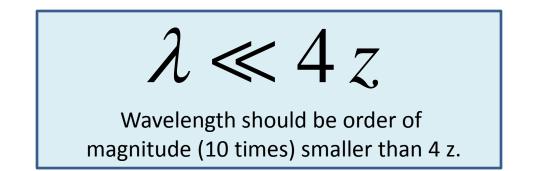
Want Small Exponential

 $0.6 k z \ll 1$

Spatial frequency

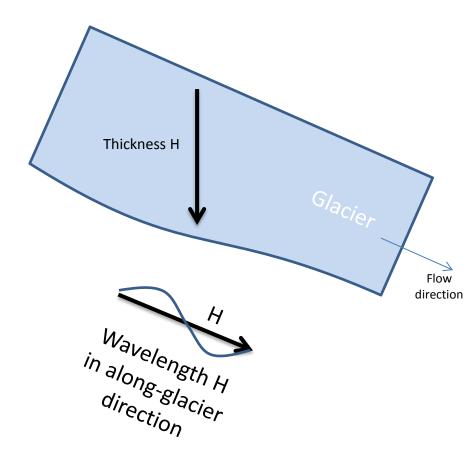
 $\lambda \ll 0.6(2\pi)z$

Equivalent spatial wavelength.



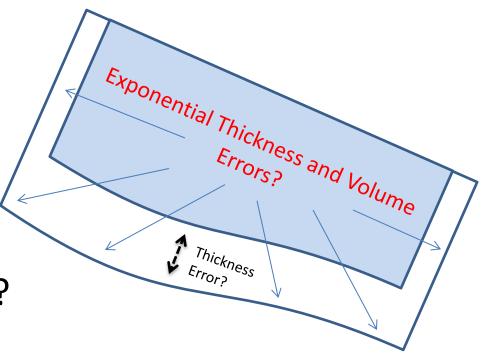
Practical Implication

- Want exponential to be negligible.
- High spatial frequencies cause big exponential.
- So remove all spatial wavelengths less than 40 H.
 - In along-glacier direction. Not depth.



But Wait! That's Just Stress?

- Stress errors grow exponentially.
 - From perturbation analysis of continuum mechanics.
 - Bahr et al (1994).
- What about velocity, thickness, volume, etc.?
 - Remember? We want volume errors for SLR!



Scaling Solution!

- All glaciological continuum parameters scale with all others.
 - From dimensional analysis.
 - Also from stretching transformations of continuum equations.
 - Bahr (1997), Bahr et al (1997), Bahr and Rundle (1995)
- Any one implies all others.
 - Observed are in blue.

 $V = cA^{\gamma}$

$$V = c_v \sigma_{ij}^{\prime \gamma_v}$$

$$H = c_H \sigma_{ij}^{\prime \gamma_H}$$

$$A = c_A \sigma_{ij}^{\prime \gamma_A}$$

$$L = bA^{\beta}$$

Lots of Little Devils in the Details

- But bottom line: Can transform stress solution to any other parameter.
 - Detail: Errors in surface stress are *always* there, either measured or calculated by model.
 - So measured/calculated errors in stress translate to errors in volume, thickness, etc.

 $\Delta \hat{\sigma}'_{ij} = \Delta \hat{\sigma}'_{ij}(k,0)e^{0.6kz}$ $\Delta \hat{V} \propto \Delta \hat{\sigma}'_{ij}(k,0) e^{0.6kz}$ $\Delta \hat{H} \propto \Delta \hat{\sigma}'_{ij}(k,0) e^{0.6kz}$ Assorted scaling constants creep in here.

What's It Mean for Volume-Area Scaling?

• The wavelength that applies to scaling is $\lambda = 2L = 2A^{0.625}$.

- Substitute and get $\Delta \hat{V} = \Delta \hat{\sigma}'_{ij}(k,0)e^{0.064 A^{-0.25}}$
- Effectively, no error growth!

Approaches zero for A > 1

What's It Mean For Numerical Inversions?

- Must filter volume solution at all wavelengths shorter than 40H.
- Suppose dx = along-glacier grid spacing of model.
 - $\lambda = 2dx$
 - Grid spacing must be 20H.
 - Can barely resolve small glaciers.
 - Will only have a few grid points in large glaciers.

Measured Area (km ²)	Expected Thickness (km)	Expected Length (km)	Grid Spacing dx (km)	Number of grid points dx in model
1	0.03	1	0.6	1
10	0.08	4	1.5	3
100	0.19	18	3.6	5
1000	0.45	75	8.5	9
10,000	1.08	316	20.3	16

Well, that's depressing.

What About Other Errors, Huh?

- Irrelevant compared to ill-posed errors.
 - Ill-posed errors are *exponential*.
 - Will swamp all other errors!
 - For example, $V = c A^{1.375}$, but *c* is poorly constrained. That means a *linear error* in *V* with linear error in *c*. — That's trivial compared to an exponential!
 - That's trivial compared to an exponential!
 - Unknown numerical model parameters. Ditto.

Upshot for Volume Calculations

- Can't do much better than scaling.
 - Simple 🙂
- Numerical models work just as well *if filtered*.
 - But sooo complicated ☺
- Lots of other sources of error.
 - Irrelevant if ill-posed errors are not controlled!
- Many good reasons to use models.
 - E.g., estimate englacial velocity and stress.
 - But volume is not one of them.

