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MPAS Overview

Status of Velocity Solvers

Coupling & Science Applications




MPAS-Land Ice

-MPAS - Model for Prediction Across Scales: A climate modeling framework
that supports dynamical cores on unstructured Voronoi (SCVT) meshes
(MPAS Atmosphere, Land Ice, Ocean, Sea Ice cores)

-Funded under PISCEES project:

.LANL, ORNL, SNL, NCAR, FSU, USC, UT, MIT

-Goal: Hierarchical suite of FEM-based ice sheet dynamical cores
(Stokes?, 1st-order?, LIL2?, etc.) based on MPAS CVT mesh generation

and modeling framework

Allows high resolution in regions
of interest, reducing necessary
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Current Breakdown of Responsibllity

4 )

Ice flow equations
—V -0 = pg and V-.-u=0,
with 0 =7 — pI = 2u(é) € — pl,
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Interface - Grids

MPAS CVT Mesh

(OK for Finite Volumes) /




MPAS CVT Mesh
(OK for Finite Volumes)

Interface - Grids

velocity

velocity
emperayure

Dual triangular Mesh
(OK for Finite Elements)




Interface - Grids

MPAS CVT Mesh velocity

(OK for Finite Volumes)

Based on 2D grid and thickness
and layers build vertically

structured 3D grid.
emperature

Build prisms with triangular base
and split them in tetrahedra.
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Dual triangular Mesh
(OK for Finite Elements)



Initial Public Release, November 2013: http://mpas-dev.github.io/
Native SIA solver

Forward Euler Time Integration

Thickness evolution

FO Upwind

Margin advance & retreat
Surface Mass Balance

Tools external to MPAS (written mostly in python)

« Setup land ice grids on regular planar hex mesh or variable resolution spherical mesh
» Ability to setup test cases: Halfar dome, EISMINT, ISMIP-HOM (in progress)
 Copy CISM datasets to MPAS grids

* Visualization tools (not many off-the-shelf options)

* Automated testing using 'lettuce'’

* 'loose' coupler to MPAS-Ocean
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Status of Velocity Solvers
- Native Fortran SIA (LANL)
- Albany-FELIX First Order (SNL)
. PHG-FELIX Stokes (USC, FSU)

Halfar analytic test case for SIA after 1000 years on 2 km mesh
Modeled thickness (m)
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MPAS SIA solver running on a sphere (o,

Simplistic "Laurentide-like" simulation:

inception, 10's ka simulation time, multiple ice masses

Surface Topography
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Sandia National Lab:

) Andy Sali
Albany-FELIX, First-Order Solver fina Kalashikova

(see talk by Irina Kalashnikova) Mauro Perego

Diagnostic surface speed for Greenland (log10 m/yr) from  Surface speed for Antarctica (m/yr) calculated from FELIX
FELIX 1st-order at 5 km (left) and 1 km (right) resolution 1st-order at 10 km resolution with uniform basal sliding
(no sliding and uniform rate factor assumed). coefficient on grounded ice of 10° Pa yr/ m.
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Univ. South Carolina: Lili Ju

Stokes-FELIX Chinese Academy of Sciences: Wei Leng

Florida State Univ.: Max Gunzburger

Top: Manufactured solutions (Leng et al., 2012) for velocity (u,v,w) and pressure (P) used for verification of FELIX-Stokes.
Bottom: Solution errors for velocity and pressure.
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Wei Leng, Lili Ju

~+ Los Alamos
NATIONAL LABORATORY UNCLASSIFIED Slide 12

E5ST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’ s NNSA " YA | =)
INASEL




Improved mass conservation of el Leng
1 Ju

Enhanced Taylor-Hood Finite Elements Max Gunzburger
P1/P1 P2/P1 P2/P1+PO0
(Tonr-Hood) (Enanced Taylor-Hood)

O Velocity DOF
A Pressure DOF

Global mass conservation only Local mass conservation

6401.5
.f,‘ 6401 } 1
Volume of ice Iin £ 64005 /\ +
manufactured solution % ¥ \
test case over 1000 yr: !
0 250 500 750 1000
time (yr)
by Lot N f. 'bf?i!j
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Application to Greenland i

Max Gunzburger

Velocity Difference between
Taylor-Hood and
Enhanced Taylor-Hood elements

Flux Divergence
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5km Greenland:
FO VS. Stokes

- Los Alamos
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iIce2sea Model Intercomparison:

Greenland Sea Level Rise Predictions
Results using MPAS model

Meltwater induced speedup Elevation feedback
Sliding = f(runoff) SMB = f(elevation)
20 20 : : :
—— control — control
— min meltwater effect —— with elevation feedback
15| —  max meltwater effect 15/
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Sea level rise equivalent (cm)

Shannon, et al. PNAS, 2013 Edwards, et al. TC, 2014
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MPAS-Ocean: Support for sub-shelf circulation

Test 2: Driven Cavity B: 15 km (varies) ﬁ ﬁ ﬁ

A A

ice shelf, imposed by surface pressure surface wind stress of 0.1 N/m? Sop=34.5
500 m varying slope
(varies) \‘
linear
E stratification
= in salinity,
- constant
500 m temperature
A:100 m
w (varies) Spor=34.7
30 km 30 km 140 km
z 3 > € > >
200 km
L}H < >
Mark Petersen, LANL
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Initial sub-shelf salinity for the idealized test case with
a subglacial cavity 1 m in height. Other parameters for
the problem are detailed in the figure above.

Mark Petersen, LANL
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After 20 days of foward model integration, a plot of the sub-
shelf salinity indicates turbulent mixing relative to the initial
condition and the development of a stable, relatively fresh-
water plume circulation beneath the shelf.
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Questions?
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Implementation Overview

" Trilinos: A
 Parallel Data Structures (EPETRA)

* Parallel Linear Solvers (GMRES, CG...)
* Preconditioners (Multilevel, Multigrid, Incomplete LU)
< Nonlinear Solvers (NOX package: Newton, JFNK methods}

I

i

[
" MPAS (land ice component):

. MPAS Framework

/0
 Voronoi unstructured grids - MPI
« Evolution equation solvers - Grid management
(temperature and thickness equation) » Timekeeping
/%1) - Shared operators
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’ s NNSA )&m vl"b@&




Interface MPAS- FELIX
MPAS FELIX

2D CVT mesh
(Stereographic projection)

thickness/elevation/layers

temperature/ice flow factor
bedrock sliding coefficient

Solver options:

model (FO, L1L2, SSA, SIA)

nonlinear solver (Newton, Picard, JFNK)

Boundary condition (free-slip, no-slip, robin, coulomb)

—_—_——

Land ice component
ice-sheets component

—
velocity

heat dissipation

viscosity



What's missing (short to medium term goals)

Velocity

L4

m Variable resolution planar hex meshes
(talking with MPAS-A)

= Finish temperature implementation
(vertical diffusion)

= Higher order thickness advection (using
modified MPAS framework methods)

i
s Coupling to CESM I

= More physics... (e.g. basal processes)

Ringler et al., Ocean Dyn. (2008)
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Status of Velocity Solvers

- Native Fortran SIA (LANL)
- Albany-FELIX First Order (SNL)
- PHG-FELIX Stokes (USC, FSU)

Below: Analytic (left) and SIA-modeled (middle) solutions for the Halfar test case after t=1000 yrs, and their difference (right).
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Beta sliding coefficient

FO Velocity Solver —‘ice stream’

Dome
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Dome: FO Velocity Solver — ‘ice stream’

thickness at time 0000-01-01_00:00:00

?D%Foisconstructx. for layer 0 at time 0000-01-01_00:00:00
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5km Greenland, 2048 processors




Greenland Ice Sheet sea level rise
Ice2sea basal lubrication experiments

=—s SMB only
e=—e SMB + min lube
e=—=» 5MB + max lube

-CISM = solid lines

-MPAS = dashed lines




Right: Vertification of FELIX
1st-order using manufactured
solutions. Plots show conver-
gence to analytical solutions
with mesh refinement when
using finite elements of
differing order.
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Below: Weak scaling of 1st-order FELIX using ISMIP-HOM Below: Strong scaling of 1st-order FELIX up to 9k processors,

test case (Pattyn et al., 2008), showing ~60% efficiency after based on diagnostic solve of 2 km resolution Greenland ice
a 4096x scale-up. Finite element assembly time remains sheet test case. 8x processors result in a ~4.5x speedup.
nearly constant.
3 168 . ]
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10 km Antarctica, no slip, with ice shelves, LifeV FO

uMag, for layer 0, log scale at time 0000-01-01_00:00:0
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Diagnostic surface speed for Greenland (log10 m/yr) from
FELIX 1st-order at 5 km (left) and 1 km (right) resolution
(no sliding and uniform rate factor assumed).
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Below: Horizontal velocity and temperature with depth and basal temperature at equlibrium for EISMINT Il test A (Payne et al., 2000), as calculated from
thermomechanically coupled FELIX-Stokes. Note the lack of “cold-ice spokes” in the basal temperatures (as seen at far-right for SIA model (Rutt et al., 2009)).
Additional tests are being conducted to understand if the lack of spokes is due to the FEM discretization, the use of Stokes, or a combination of factors.
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