Application of physics-based interpolation to cryospheric data

Jesse V. Johnson and Douglas J. Brinkerhoff

30 January, 2014 Winter LIWG Meeting, Boulder, CO

Geophysical data with noise and gaps in coverage Problem Statement

Radar outstanding, but only along flightlines.

Geophysical data with noise and gaps in coverage Problem Statement

InSAR velocity excellent, but has gaps and noise.

Geophysical data with noise and gaps in coverage Problem Statement

Interpolation of bed produces artefacts.

Geophysical data with noise and gaps in coverage Problem Statement

Close inspection of speed reveals noise.

Geophysical data with noise and gaps in coverage Problem Statement

Data are combined to produce flux divergence, $\nabla \cdot (\mathbf{u}H) \neq \dot{a}$

Johnson and Brinkerhoff

Geophysical data with noise and gaps in coverage Problem Statement

Prognostic modleing

- Assimilation of surface velocity (traction control variable)
- Steady state temperature
- prognostic run forward

Objective

What do we hope to accomplish?

We seek to *reduce noise and interpolate* geophysical data is a manner is consistent with:

- other observations.
- physics.
- stated errors.
- smoothness requirements.

We like to call this *physics based interpolation*. The transient portion of prognostic runs should be removed, or greatly reduced.

Optimization cartoon

With (slightly dated) references to popular culture!

Johnson and Brinkerhoff Physics-based interpolation

Optimization cartoon

With (slightly dated) references to popular culture!

Johnson and Brinkerhoff Physics-based interpolation

Optimization cartoon

With (slightly dated) references to popular culture!

Optimization cartoon

With (slightly dated) references to popular culture!

Optimization cartoon

With (slightly dated) references to popular culture!

Optimization cartoon

The bounds come from data

A closer look at error bounds

Error bounds enter the constraint

Error bounds

$$H \in [H_o - \Delta H_o, H_o + \Delta H_o]$$

$$u_o \in [u_o - \Delta u_o, u_o + \Delta u_o]$$

$$\dot{a} \in [\dot{a} - \Delta \dot{a}, \dot{a} + \Delta \dot{a}]$$

$$\hat{N} \in [\hat{N} - \Delta \hat{N}, \dot{a} + \Delta \hat{N}]$$

Speed errors published with InSAR data, note $u_o < .5$ discarded

A closer look at error bounds

Error bounds enter the constraint

Error bounds

$$\begin{array}{rcl} H & \in & [H_o - \Delta H_o, H_o + \Delta H_o] \\ u_o & \in & [u_o - \Delta u_o, u_o + \Delta u_o] \\ \dot{a} & \in & [\dot{a} - \Delta \dot{a}, \dot{a} + \Delta \dot{a}] \\ \hat{\mathbf{N}} & \in & \left[\hat{\mathbf{N}} - \Delta \hat{\mathbf{N}}, \dot{a} + \Delta \hat{\mathbf{N}} \right] \end{array}$$

Thickness errors published with Bamber 2013 bed topography, note min. error of 35 m imposed.

A closer look at error bounds

Error bounds enter the constraint

Error bounds

$$\begin{array}{rcl} H & \in & \left[H_o - \Delta H_o, H_o + \Delta H_o \right] \\ u_o & \in & \left[u_o - \Delta u_o, u_o + \Delta u_o \right] \\ \dot{a} & \in & \left[\dot{a} - \Delta \dot{a}, \dot{a} + \Delta \dot{a} \right] \\ \hat{\mathbf{N}} & \in & \left[\hat{\mathbf{N}} - \Delta \hat{\mathbf{N}}, \dot{a} + \Delta \hat{\mathbf{N}} \right] \end{array}$$

No idea of the errors in apparent mass balance. Guess \pm 10 m.

A closer look at error bounds

Error bounds enter the constraint

Error bounds

$$H \in [H_o - \Delta H_o, H_o + \Delta H_o]$$

$$u_o \in [u_o - \Delta u_o, u_o + \Delta u_o]$$

$$\dot{a} \in [\dot{a} - \Delta \dot{a}, \dot{a} + \Delta \dot{a}]$$

$$\hat{N} \in [\hat{N} - \Delta \hat{N}, \dot{a} + \Delta \hat{N}]$$

Errors in \hat{N} estimated to be $\pm 5^{\circ}$ for fast moving ice and $\pm 1^{\circ}$ elsewhere.

Optimization cartoon

Inside the BFGS, destination is needed

Optimization cartoon

The destination is the data

Johnson and Brinkerhoff Physics-based interpolation

Optimization cartoon

Current location is also needed, this is the model output

Johnson and Brinkerhoff Physics-based interpolation

Optimization cartoon

Current location is also needed, this is the model output

Optimization cartoon

The directions are challenging to understand

Johnson and Brinkerhoff Physics-based interpolation

Optimization cartoon

The directions are challenging to understand

Optimization cartoon

The directions are challenging to understand

Gradients explained

Optimization requires gradients

Chain rule variation of objective function

$$\begin{split} \delta \mathcal{I} &= \delta \mathcal{I}(\delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \lambda') + \delta \mathcal{I}(H, \delta u_o, \dot{a}, \hat{\mathbf{N}}, \lambda') \\ &+ \delta \mathcal{I}(\delta H, u_o, \delta \dot{a}, \hat{\mathbf{N}}, \lambda') + \delta \mathcal{I}(\delta H, u_o, \dot{a}, \delta \hat{\mathbf{N}}, \lambda') \\ &+ \delta \mathcal{I}(\delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \delta \lambda') \end{split}$$

Gradients explained

Optimization requires gradients

Chain rule variation of objective function

$$\begin{split} \delta \mathcal{I} &= \delta \mathcal{I}(\delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \lambda') + \delta \mathcal{I}(H, \delta u_o, \dot{a}, \hat{\mathbf{N}}, \lambda') \\ &+ \delta \mathcal{I}(\delta H, u_o, \delta \dot{a}, \hat{\mathbf{N}}, \lambda') + \delta \mathcal{I}(\delta H, u_o, \dot{a}, \delta \hat{\mathbf{N}}, \lambda') \\ &+ \delta \mathcal{I}(\delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \delta \lambda') \end{split}$$

Find a variation, for example, δH

$$\delta \mathcal{I}(\delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \lambda) = \int_{\Omega} \frac{\partial}{\partial \epsilon} \bigg|_{\epsilon=0} \mathcal{I}(H + \epsilon \delta H, u_o, \dot{a}, \hat{\mathbf{N}}, \lambda) \mathrm{d}x,$$

Gradients explained

Optimization requires gradients

Application of variation throughout

$$\delta \mathcal{I} = \int_{\Omega_{\theta}} \left[\left(u_{m} - u_{o} \right) \delta u_{m} - \left(u_{m} - u_{o} \right) \delta u_{o} \right] dx + \lambda' \int_{\Omega} \left[\nabla \cdot \left(\delta u_{m} \hat{\mathbf{N}} H \right) + \nabla \cdot \left(u_{m} \hat{\mathbf{N}} \delta H \right) + \nabla \cdot \left(u_{m} H \delta \hat{\mathbf{N}} \right) - \delta \dot{a} \right] dx + \delta \lambda' \int_{\Omega} \left(\nabla \cdot u_{m} \hat{\mathbf{N}} H - \dot{a} \right) dx$$

Gradients explained

Optimization requires gradients

Identification of terms in variation

$$\delta \mathcal{I} = \int_{\Omega_{\theta}} \left[\underbrace{(u_m - u_o) \, \delta u_m}_{\text{Adjoint RHS}} - \underbrace{(u_m - u_o) \, \delta u_o}_{g_{u_o}} \right] dx$$

$$+ \lambda' \int_{\Omega} \left[\underbrace{\nabla \cdot \left(\delta u_m \hat{\mathbf{N}} H \right)}_{\text{Adjoint LHS}} + \underbrace{\nabla \cdot \left(u_m \hat{\mathbf{N}} \delta H \right)}_{g_H} + \underbrace{\nabla \cdot \left(u_m H \delta \hat{\mathbf{N}} \right)}_{g_{\mathbf{N}}} - \underbrace{\delta \dot{a}}_{g_{\dot{a}}} \right] dx$$

$$+ \delta \lambda' \int_{\Omega} \underbrace{\left(\nabla \cdot u_m \hat{\mathbf{N}} H - \dot{a} \right)}_{\text{Forward Model}} dx$$

Optimization cartoon

Directions can be simplified

Optimization cartoon Downhill is good for the BFGS

Johnson and Brinkerhoff Physics-based interpolation

North West region: speed results

Smoothed and interpolated with physics based PDE-constrained optimization

Johnson and Brinkerhoff

North East region: speed results

Smoothed and interpolated with physics based PDE-constrained optimization

Johnson and Brinkerhoff

Physics-based interpolation

Central region: speed results

Smoothed and interpolated with physics based PDE-constrained optimization

Johnson and Brinkerhoff

Southern region: speed results

Smoothed and interpolated with physics based PDE-constrained optimization

Johnson and Brinkerhoff

Thickness (bed) results

Great interest in this, it conserves mass

Johnson and Brinkerhoff

Thickness (bed) results

More interesting to look at changes in thickness

Johnson and Brinkerhoff

Apparent accumulation results $\dot{a}' = \dot{a} - \frac{\partial H}{\partial t}$

Johnson and Brinkerhoff

Model intercomparison (MPAS)

Differences likely due to regularization

Johnson and Brinkerhoff

Direction results

 $\hat{\mathbf{N}} = (n_x, n_y), n_y$ plotted here.

Johnson and Brinkerhoff

Conclusion

Are the transients gone?

- transients in prognostic runs are lower
- speeds near terminus are not as "smooth" as the data show them to be
- it's not clear how good is good enough. Current RMSE \sim 60 m/a
- the role of regularization and the objective function need to be explored

