Toward Simulations of Coupled, Antarctic, Ice-Ocean Evolution Using BISICLES and POP2x

Dan Martin Lawrence Berkeley National Laboratory Land Ice Working Group

January 30, 2014

Office of Science

(Applying BISICLES to Realistic Problems)

- Joint work with:
- □ Xylar Asay-Davis (LANL/Potsdam-PIK/NYU-Courant)
- □ Steve Price (LANL)
- □ Mat Maltrud (LANL)
- Doug Ranken (LANL)
- □ Stephen Cornford (Bristol)
- □ Mark Adams (LBNL-FASTMath)
- □ Esmond Ng (LBNL)

Motivation: Projecting future Sea Level Rise

- Potentially large Antarctic contributions to SLR resulting from marine ice sheet instability, particularly from WAIS.
- Climate driver: subshelf melting from warm(ing) ocean water intrusion into subshelf cavities.
- Paleorecord implies that WAIS has deglaciated in the past.

Motivation: Future Sea Level Rise (SLR)

Observations and modeling argue for the importance of ice-ocean interactions in causing changes in submarine melt rates, with consequent dynamic ice sheet response, including grounding line retreat and increased mass flux to the oceans.^{1, 2}

¹Joughin & Alley (*Nat. Geosc.*, **4**, 2011) ² Straneo et al. (*BAMS*, **94**, 2013)

University of

BRISTOL

Previous Work (mainly Antarctic)

Previous work exploring coupled ice-ocean evolution:

- idealized, stand-alone ocean modeling
- idealized, stand-along ice sheet modeling
- realistic, low / high res., stand-alone ocean modeling
- realistic, low / high res., stand-alone ice sheet modeling
- idealized, fully coupled ice-ocean modeling

Our Goal: realistic, high resolution, fully coupled iceocean modeling

Grosfeld et al. (1997); Holland & Jenkins (2001); Walker et al. (2007,2008); Losch (2008); Holland et al. (2008); Thoma et al. (2008); Pollard et al. (2009); Joughin et al. (2010); Yin et al. (2011); Cornford et al. (2012); Mueller et al. (2012); Schodlok et al. (2012); Heimbach & Losch (2012); Goldberg et al. (2012a,b); Gladish et al. (2012); Little et al. (2012); Hellmer et al. (2012); Timmerman et al. (2013); Kushara et al. (2013); Sergienko et al. (2013a,b); Parizek et al. (2013); Wilson (2013); Robinson (2013) ... plus many more.

Models:

Ocean Circulation Model: POP2x

□ Ice Sheet: BISICLES (CISM-BISICLES)

Ocean Model: POP2x

- POP2 = Parallel Ocean Program version 2 (hydrostatic, Boussinesq, primitive equations)¹
- z-level vertical coordinate, partial bottom cells
- "x" = eXtended to include ice shelf cavity circulation using partial top cells²
- sub-shelf mixed layer thickness = dz (vert. mixing scheme², not physics based)
- For idealized experiments², sub-shelf circulation in POP2x compares very well with previously published results

¹Smith et al., (2010); ²Losch (2008)

Modeling ice shelves in POP

POP2x: Southern Ocean experiments

Experimental Setup:

- hi-res (eddying) ocean model with circulation under static ice shelves (**POP2x**)
- regional southern ocean domain (50-90 deg. south)
- ~5 km horiz. res. near ice shelves of interest
- "Normal Year"¹ forcing with monthly restoring to WOA data at northern boundaries
- bathymetry and ice draft from Bedmap2²

¹Large and Yeager (2008); ²Fretwell et al. (2013)

POP2x: realistic experiments (uncoupled)

circumpolar simulation domain

POP2x: realistic experiments (uncoupled)

Office of Science

BISICLES Ice Sheet Model

- DOE SciDAC-funded project to develop a scalable adaptive mesh refinement (AMR) ice sheet model/dycore
 - Local refinement of computational mesh to improve accuracy
- Chombo AMR framework supports block-structured AMR
 - Support for AMR discretizations
 - Scalable solvers
 - Developed at LBNL
 - DOE ASCR supported (FASTMath)
- Collaboration with LANL and Bristol (U.K.)
- □ Variant of the "L1L2" model.
- □ Alternate dycore interface to CISM
- Linked to Petsc linear solver package for improved solver robustness and performance.

Ice2Sea Amundsen Sea Results

- SLR contribution from Ice2Sea simulation of Amundsen Sea w/ warming ocean forcing.
- Need at least 2 km resolution to get any measurable contribution to SLR.
- □ Appears to converge at first-order in ∆x

time (years)

eustatic sea level rise (mm)

Community Ice Sheet model (CISM)/BISICLES

- □ CISM (F90) to BISICLES (C++)
- General API design for coupling alternate dynamical cores into CISM
- Moderately complex build process (working to streamline)
- CISM owns "main", problem setup, coupler to ESMs, other physics (like isostasy, hydrology, etc)
- CISM hands control to BISICLES, which evolves the ice sheet
- □ BISICLES passes fields like thickness, velocity back to CISM
- □ I/O: Both CISM NetCDF and BISICLES/Chombo HDF5
- □ (includes checkpoint-restart)

CISM/BISICLES coupling (cont)

Office of Science

BISICLES Standalone: Antarctica Steady-State

- □ BedMap2 (2013) Topography, thickness,
- □ Rignot (2011) Velocities
- Temperature field from Pattyn (SIA)
- □ Subshelf melt rates from POP2x
- □ Synthetic SMB to maintain balance.
- 1 km resolution

BISICLES Standalone: Extreme Melting

Perturb with additional 50 m/a subshelf melting

BISICLES Standalone: Extreme melting

BISICLES Standalone: Extreme Melting

Coupling: Asynchronous-offline

Assumes that relevant dt_{ice_sheet} >> dt_{ocean} such that sub-shelf circulation is always in quasi-equilib. with ice sheet forcing

Coupling time step ~ ice sheet evolution time step

BISICLES \rightarrow POP2x:

- ice draft
- basal temperatures
- grounding line location
- POP2x \rightarrow BISICLES:
 - time averaged sub-shelf melt rates

Coupling offline using standard CISM and POP netCDF I / O

Coupled Models: Goldberg Test Problem

BISICLES + POP2x: coupled, idealized experiments

BISICLES + POP2x: coupled, Antarctic experiments

Offline ice-ocean coupling time step once per year:

- Re-grid / filter ocean geom. after shelf geom. change
- Run 2 months of ocean model spin-up ++
- Run additional 1 yr of ocean model **
- Average 1 yr of melt rates (minus 2 month spin-up) and pass to ice sheet model
- Evolve ice sheet model (with sub-shelf melt)

Notes:

- ++ barotropic mode initialization difficult with anything other than model at rest and sea-surface height = 0
- ** 1 yr coupling freq. is somewhat arbitrary initial choice, but supported by results (in general, no large, unrealistic changes in ice geometry)

Issues emerging from coupled runs

POP2X Cold bias

- cold water advected around Antarctic peninsula, decreasing melting.
- Seems to be a result of either incorrect forcing (wind), or incorrect fresh-water fluxes (sea ice)
- Currently experimenting with ways to fix the issue

POP2x restarts

- Need to spin up from rest after every coupling interval
- (let to fluctuations between different spun-up states)
- Xylar thinks he's managed to fix this testing...
- 2 codes means 2x sensitivity to LCF changes!

Extras

Linear Solvers - PETSc GAMG vs. Geometric MG

BISICLES Standalone: Enhanced Melting

Double POP2X Melting

U.S. DEPARTMENT OF

Total Grounded Ice vs. Time

Total Ice Over Flotation vs. Time

NATIONAL LABORATOR

University of

BRISTOL

- Refreezing zones rapid freezing, then held at flotation
- Melt doesn't follow retreating GL.

Office of

Science

Ice2Sea Amundsen - Thwaites?

- In 400 year run, Thwaites destabilizes as well.
- Same forcing as previous run, subshelf melting held constant past 2200.
- Thwaites is very stable, until it tips.

U.S. DEPARTMENT OF

Office of

Science

POP2x realistic experiments (uncoupled)

POP2x: realistic experiments (uncoupled

Motivation: Future Sea Level Rise (SLR)

Projections: For RCP8.5, [projected] global mean SLR for 2081–2100 (relative to 1986–2005) [is] 0.45–0.81 m ... range at 2100 is 0.53–0.97 m

Based on current understanding, only the collapse of marine-based sectors of the Antarctic ice sheet, if initiated, could cause [21st century *SLR*] substantially above the likely range

Paleorecord:

Pliocene warm intervals: CO₂ levels 250-400 ppm; temperatures 2° C to 3.5° C warmer than pre-industrial; records suggest deglaciation of West Antarctica and parts of East Antarctica *with global mean sea level not* >20 *m above present*

Last Interglacial: global temperatures were not more than 2° C above preindustrial; global mean sea level at least 5 m higher than present; Greenland likely contributed 1.4 - 4.3 m, *implying a contribution from Antarctica*

