Enlargement of englacial conduits in cold ice – basic theory and some simple experiments

Austin Nossokoff and Harihar Rajaram University of Colorado, Boulder

Basic processes enabling establishment of englacial hydrologic network in cold ice -

Fracture propagation, melt enlargement of conduits/passages

(need to work against creep closure and refreezing)

This research focuses only on melt enlargement and refreezing

Simplified model of water-carrying conduit in cold ice - neglecting advective transport in water (along conduit length), assuming water discharge rate is constant, water temperature = 0 degrees)

 $\hat{\mathsf{C}}\mathsf{old} \mathsf{lce} \; \; \theta_0 < \hat{\mathsf{0}}$ **∕**R(t) water-carrying conduit, radius R water temperature = 0 always

Heat conduction equation in cold ice (radial)

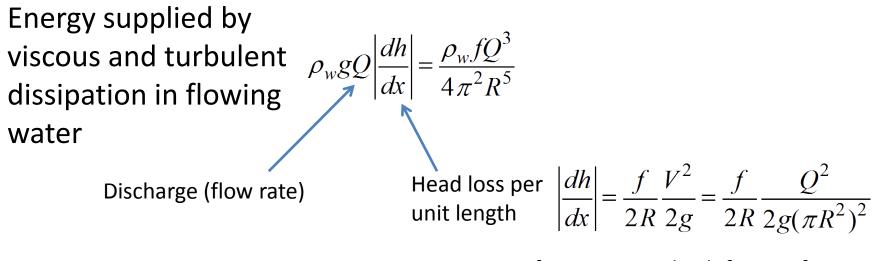
$$\rho_i C_i \frac{\partial \theta}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(rk_i \frac{\partial \theta}{\partial r} \right) = 0, \ r > R(t)$$

Initial condition (cold ice) $\theta(r, t=0) = \theta_0, r > R(t=0)$

Boundary conditions at ice-water interface R(t)...a moving boundary

 $\theta(R(t), t) = \theta_{PMP} = 0$ at the phase change interface

Energy Balance condition at interface


$$\rho_w g Q \left| \frac{dh}{dx} \right| = \rho_w L \times 2\pi R \frac{dR}{dt} - 2\pi R k_i \frac{\partial \theta}{\partial r}$$

Energy supplied by viscous and turbulent dissipation in flowing water

Energy available to grow conduit

$$2\pi Rk_i \frac{\partial \theta}{\partial r}\Big|_{r=R(t)}$$

Energy conducted into cold ice (heat loss from water)all per unit length of conduit

f = Darcy-Weisbach friction factor

(head loss formula for pipe flow)

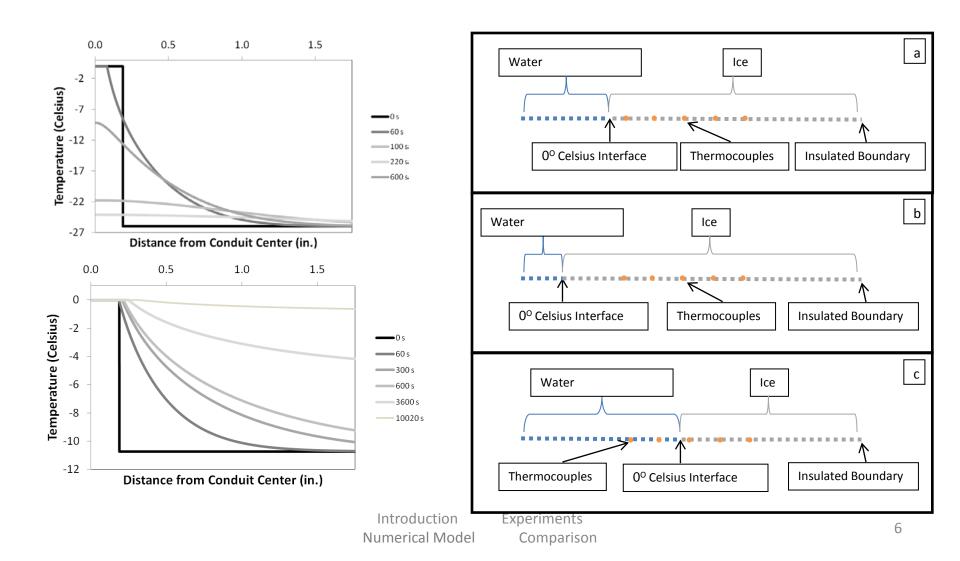
Moody Diagram

Radius evolution equation

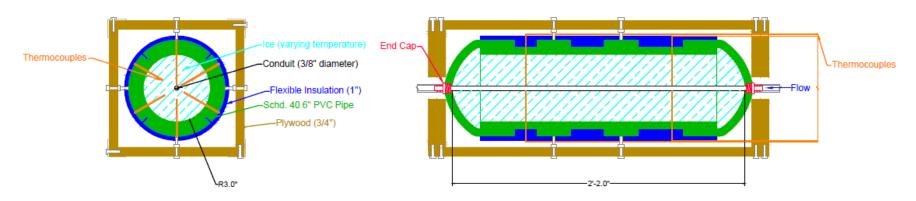
$$\frac{dR}{dt} = \left(\frac{\rho_w f Q^3}{4\pi^2 R^5} + 2\pi R k_i \frac{\partial \theta}{\partial r}\Big|_{r=R(t)}\right) / \left(2\pi R \rho_w L\right)$$

Stagnant water (no flow, no internal energy generation by dissipation)

$$\frac{dR}{dt} = \left(2\pi Rk_i \frac{\partial\theta}{\partial r}\Big|_{r=R(t)}\right) / \left(2\pi R\rho_w L\right)$$

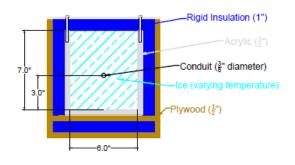

Negative (warmer inside) ...obviously always get refreezing (energy in water is transferred to ice, causing water to refreeze, conduit radius shrinks)

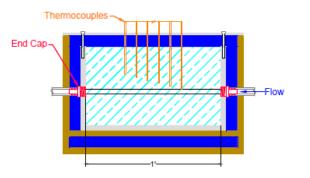
To get conduit to grow, need


$$\frac{\rho_w f Q^3}{4\pi^2 R^5} \text{ TO BEAT OUT } 2\pi R k_i \frac{\partial \theta}{\partial r} \bigg|_{r=R(t)}$$

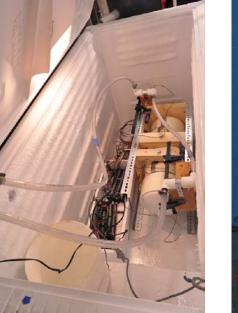
i.e. supply more energy to conduit wall by viscous/turbulent dissipation than is extracted by heat loss from water to ice by conduction.....in an integrated sense over some time interval (the first term's integral $\sim \Delta t$, the conductive flux term's integral $\sim \sqrt{\Delta t}$ at early time) – not entirely satisfying <u>analytical</u> criterion for "critical flow rate" Q to produce growth.

Numerical Model

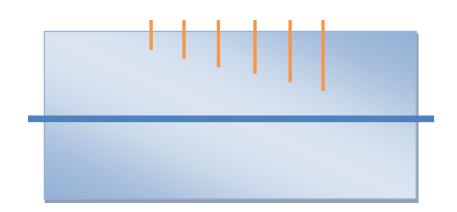


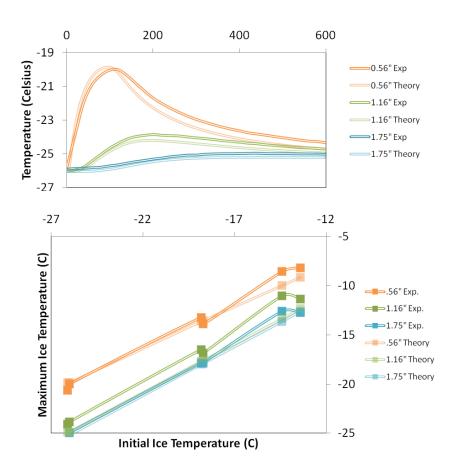

Experimental Schematics

End Cross-Section View


Ice Sample Container Comparison

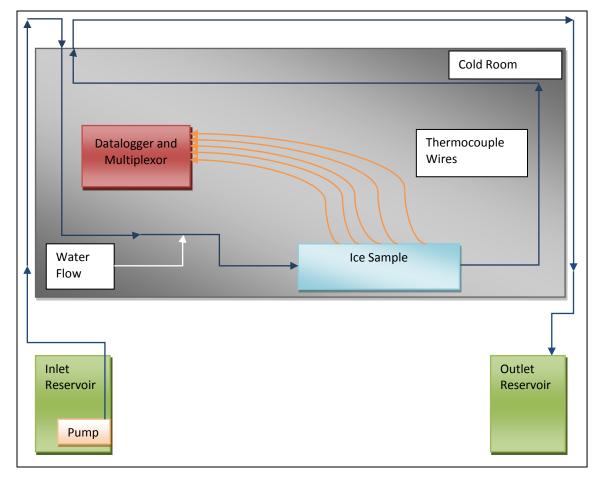
Insulated Box




Stagnant Water Tests

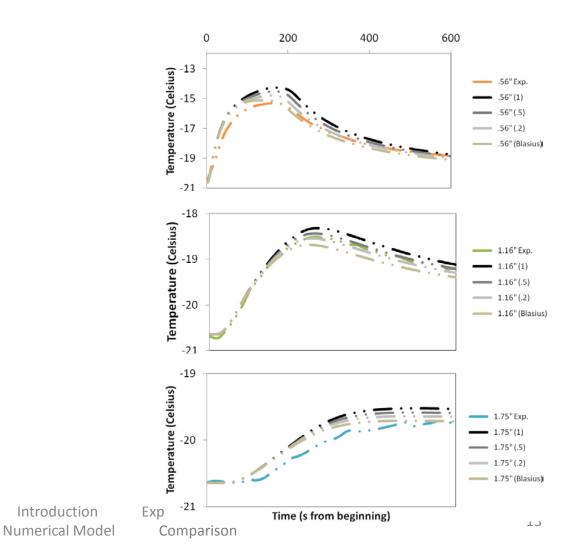
- Performed at CU
- Conduit re-augered after each succesful test
 - Multiple tests per ice sample
- Ice Dimensions
 - 6" Tall
 - 6" Wide
 - 12" Long
 - 3/8" Initial conduit radius

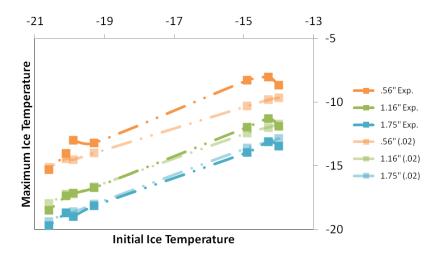
- O Degrees Celsius Water
 Poured into each end
- 6 thermocouples recording temperature



Stagnant Comparison

- Model matches temperature values well
 - Locations furthest from center best
- Differences attributed to not perfectly radial heat transfer (square box)


Low Water Flow Rate Tests


Low Water Flow Rate Comparison

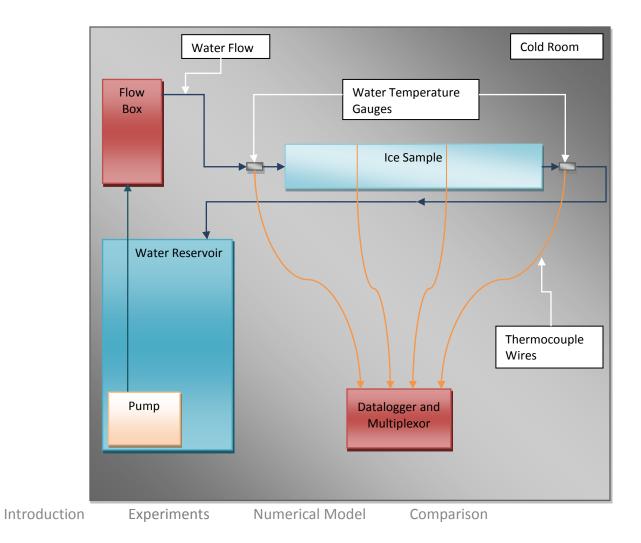
- Ice input as initial constant temperature
- Radial numerical code used
- Blasius smooth pipe approximation fits well
 - Darcy-Weisbach friction factor
- Model best at higher ice temperatures

Low Water Flow Rate Comparison

Low Water Flow Rate Comparison

Low Flow								
Initial Ice	Critical Flow Rate (gpm)							
Temperature (C)	Initial	Blasius	f=.2	f=.5	f=1			
-14.0	2.05	7.25	3.54	2.61	2.07			
-14.3	1.87	7.31	3.56	2.63	2.08			
-14.9	2.05	7.42	3.61	2.66	2.11			
-19.3	1.87	8.15	3.94	2.90	2.30			
-19.9	2.08	8.24	3.98	2.93	2.33			
-20.1	3.08	8.27	3.99	2.94	2.33			
-20.6	2.57	8.34	4.03	2.97	2.35			

- Friction factor of 1 too high
 - Blasius smooth pipe approximation used (f=.02)
- Nearest temperature recording slightly underpredicts temperature


Introduction Numerical Model

- Performed at NASA GSFC
- Conduit re-augered after each succesful test
 - Multiple tests per ice sample
- Ice Dimensions
 - 6" Diameter
 - 26" Long
 - 3/8" Initial conduit radius
 - Introduction Numerical Model

- O Degrees Celsius Water
 Pumped through ice
- 12 thermocouples recording temperature
 - 2 profile locations

Experiments Comparison

High Flow					
Initial Ice Temperature (Celsius)					
-1.66					
-4.53					
-4.60					
-5.43					
-5.51					
-5.73					
-6.03					
-9.55					
-10.74					

4000

Time (s from beginning)

6000

8000

10000

0

2

0

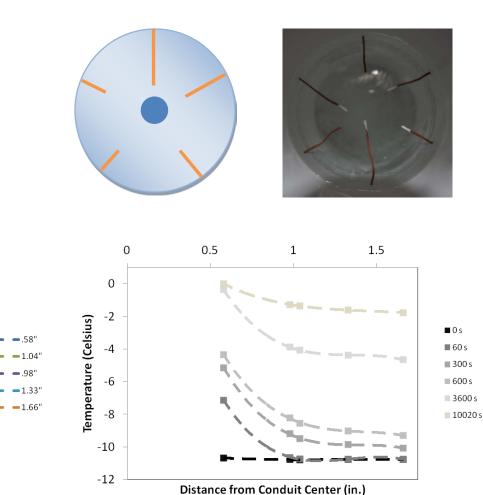
-2

-4

-6

-8

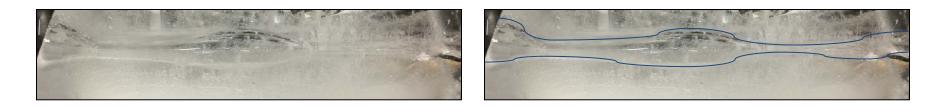
-10


-12

Temperature (Celsius)

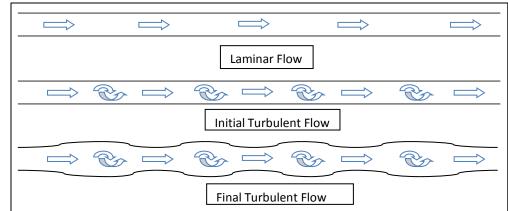
2000

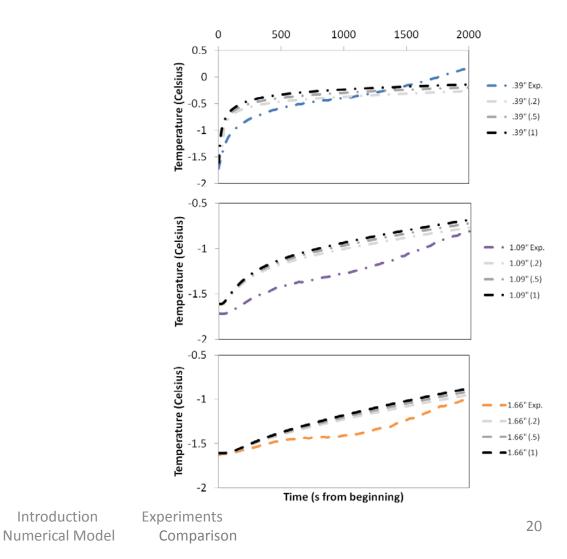
MIII MII


11

Introduction Numerical Model

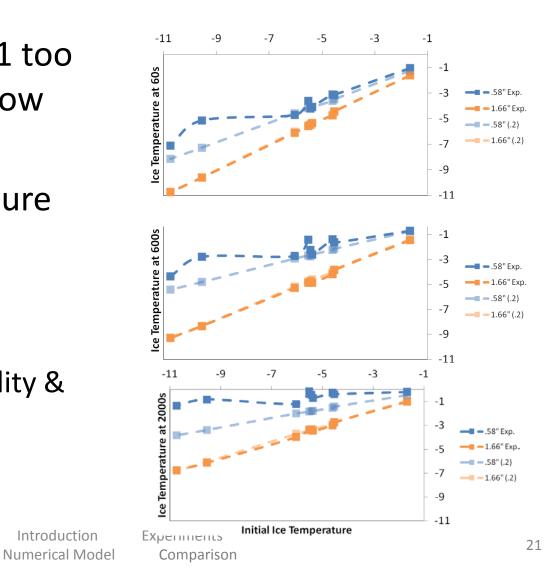
- Final conduit geometry
 - Radius not constant through ice sample length
 - Scalloping due to turbulent flow during conduit expansion




Introduction Numerical Model

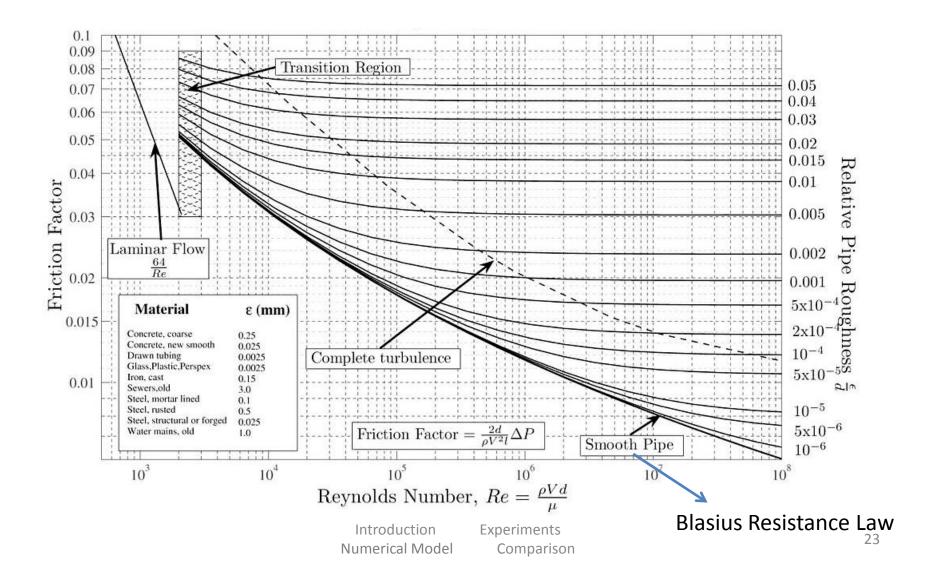
Scalloping

- Turbulent Flow
 - Eddies form and carve dimples
- Scallops turn walls from smooth to (very, very) rough



- Friction factor of 1 too high, Blasius too low - f=0.2 best fit
- Nearest temperature recording slightly underpredicts temperature
 - Multidimensionality & scalloping

Introduction



- Ice input as initial constant temperature
- Radial numerical code used
 - Not significant time for latent heat to reach boundary to affect model
- Friction factor of 0.2 fits best
 - Darcy-Weisbach friction factor
 - Introduction Numerical Model

- Model best at low time
 - Conduit expansion not uniform along length
 - Scalloping occurs

High Flow (4 gpm)								
Initial Ice	Critical Flow Rate (gpm)							
Temperature (C)	Blasius	f=.2	f=.5	f=1				
-1.66	3.34	1.74	1.28	1.02				
-4.53	4.81	2.43	1.79	1.42				
-4.60	4.84	2.44	1.80	1.43				
-5.43	5.14	2.58	1.90	1.51				
-5.51	5.17	2.59	1.91	1.52				
-5.73	5.24	2.63	1.94	1.54				
-6.03	5.34	2.67	1.97	1.56				
-9.55	6.31	3.12	2.30	1.82				
-10.74	6.58	3.22	2.37	1.88				

Moody Diagram

In Summary

Very good agreement between experiment and theory/numerical model

Very interesting insights on friction factor in englacial conduits even at this small laboratory scale

 – under refreezing conditions, conduits behave like smooth conduits (Blasius Resistance law provides best fit)

– but under conditions of conduit growth, scalloping causes extremely high "friction factors" (f=0.2 > typical f used even for "rough" pipes)...confirms field observations reported in recent paper by Gulley et al. (2013) on roughness of englacial and subglacial conduits....scalloping is likely an inherent self-organized process resulting from interaction between turbulent eddies and melting (glacial karst) or dissolution (limestone karst)

Future Work: inclusion of creep closure effects