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Increasing turnover rates in tropical forests

Turnover = average of mortality and recruitment rates

Motivation: Increased disturbance rates associated with climate change remains a

major global change issue for Amazon forests.
Turnover (Phillips et al. 2004)
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Approach

e To address this issue, we parameterized and calibrated ZELIG-TROP,
a dynamic vegetation gap model, to simulate a complex Central
Amazon forest toward evaluating disturbance-recovery processes
under scenarios of increased disturbance rates

What are the differences after increasing disturbance rates in ZELIG-
TROP vs. CLM-CN 4.5 for the Central Amazon?
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- ZELIG-TROP: Species
specific parameterization
(90 tropical tree species,
Laurance et al. 2004)

- ZELIG-TROP: stochastic and
mechanistic mortality
algorithm

- CLM-CN 4.5: constant
annual mortality of 2% yr!
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Model Verification Results

Avg. Basal ) Avg. Stem Ave.
Argea (m2 ~ A\ve Blomass D%nsity Avg. LAI ANPPg(Mg
ha—l) (Mg Cha™) (ha'l) Cha! yr-l)

Empirical Data 30.06 (6.61) 169.84 (27.60) 656 (22) 5.7 (0.50) 6.5
ZELIG-TROP 32.96(1.22) 178.38(10.53)  574(70) 5.8(024) 54(022)

————> Percent Diff. (%) 9.66 5.03 -12.49 1.75 -17.08
ZELIG-TROP min./max. 31.14/35.97 167.97/18926  472/688  526/6.48  5.08/5.92

Compared ZELIG-TROP results to empirical data from long-term transect
inventory plots located in the Central Amazon.
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Modeled disturbance treatments

* No Disturbance: background mortality only (~1% yr1), using stochastic and
mechanistic mortality algorithm

* High/Continual Disturbance: doubled background tree mortality rates in Central
Amazon (~1% yr1) to ~2% yr! (100% increase in annual mortality)

e Periodic disturbance: removed 20% of stems every 50 years for 200 years

e Both treatments in ZELIG-TROP and CLM-CN 4.5

 Ran for 500 years, steady-state reached at last 100 years
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More

Field data: Chambers et al. 2004. Response of tree biomass and wood litter to disturbance in a Central amazon forest. Oecologia .
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Impacts of High Disturbance

42% decrease in AGB (at steady-state)
Net carbon loss of 74 Mg C ha

Treatment: Increasing disturbance in C&E Amazon
to match turnover rates of W&S

Drop in observed AGB only when including
weighting for wood density in biomass equation

Model in-accurately predicted the loss in AGB
due to increased mortality

Models and allometric equations should factor in
wood density
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Stem Density (stems ha-1)

Impacts of High Disturbance

69% increase in recruitment rates

Mortality and recruitment tightly linked
8% decrease in coarse litter production rates

34% increase in stem density

Recruitment Rate (% yr')

Recruitment Rate

— decrease in observed data w/ higher turnover
— Opposite response to validation data

17% decrease in growth rates

— increase in observed data w/ higher turnover

— Opposite response to validation data (?)
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ANPP (Mg C ha™)

AGB (Mg C ha™)

ZELIG-TROP vs. CLM-CN 4.5

Important for improving Earth System Modeling

CLM 4.5 was very similar to “benchmark” gap model in terms of net biomass
loss (AGB), and disturbance-recovery processes (42% vs. 50% decrease)

But, inaccurately getting the correct AGB response (false positive)

Basal area drives loss of AGB in ZELIG-TROP, LAl drives loss of AGB in CLM,
wood density drives loss of AGB in empirical data
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Periodic Disturbance Results

CLM 4.5 was very similar to “benchmark” gap model in terms of net biomass
loss (AGB), and disturbance-recovery processes

— 18% vs. 19% decrease after each large-scale disturbance

— 17% vs. 15% biomass recovery over the 50 year period
— Negative total AAGB: -0.15 and -0.46 Mg C ha! yr! for ZELIG-TROP and CLM
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AGE (Mg C ha-1)

ZELIG-TROP vs. CLM

Discrepancies —

1) ZELIG-TROP =74 Mg C halaverage AGB net carbon loss; CLM = 134 Mg
C ha! as a result of doubling background mortality

2) The temporal variability in carbon stock and fluxes was not replicated in
CLM

- Large fluctuation in coarse litter production rate representative of a heterogeneous
landscape, gap dynamics, and differences in plant demography

3) ZELIG-TROP = Gains that exceed the losses; CLM = losses that exceed the
gains (but very minimal, probably not biologically significant)

(CLM) p<0.001 & increase in coarse litter
(ZELIGTROP) p<0.01 & decrease in coarse litter
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Summary

Both models predicted a reduction in steady-state carbon stocks with increased
disturbance and tree mortality.

— BUT, inaccurate response. Wood density NOT included in the models, therefore the
reduction in steady-state carbon stocks should not have taken place.

— AGB — pseudo “false positive”

Wood density, stem density, and growth rates — do not follow expected pattern
between the regions, but instead show opposite response.

This suggests that 1) the models are not accurately simulating all forest
characteristics in response to increased disturbances, or 2) the variability between
regions cannot be entirely explained by the variability in disturbance regime, but
rather potentially sensitive to intrinsic environmental factors.

— Soil genesis

— Okxisols and spodosols (poorer soils) vs.

— Ultisols, inceptisols, entisols (richer soils) A 0 s
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Summary — improving disturbance in ESMs

The relative net biomass loss due to disturbances, as well as
biomass recovery, was consistent between CLM and ZELIG-TROP,
and for both disturbance types (continual and periodic).

The relative net carbon loss was 42% vs. 50% for the high
disturbance treatment, and 18% and 19% for the periodic
disturbance treatment, in ZELIG-TROP and CLM respectively.

Major differences between the two models were that the inter-
annual variability in AGB and coarse litter production was not
representative in CLM.

— Need for demographic vegetation model in CLM (ED-CLM)

— Absolute value of AGB still high in CLM-CN 4.5 (for Central Amazon).

Second major difference was that the gains exceeded the losses in
ZELIG-TROP, and the losses exceeded the gains in CLM, but probably
not biologically significant (because the models do not have CO?
fertilization, and the models are in an equilibrium steady-state).
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IESM Impact & Collaboration

e Integrated Earth System Model (iESM) — combining an Integrated Assessment Model
(IAM) with an Earth System Model (ESM).

— GCAM & GLM & CLM/CESM
— Improve knowledge of coupled physical, ecological, and human system.

. Le Page et al. 2013

— Analysis in GCAM only — Global Change Assessment Model
— Dynamic economy, energy, and land use model

— How to reach a stringent mitigation target (3.7 W m=) with natural disturbances increasing
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