

## Effects of groundwater-fed irrigation on terrestrial hydrology simulated by CLM

#### MAOYI HUANG<sup>1</sup>, GUOYONG LENG<sup>1,2</sup>, L. RUBY LEUNG<sup>1</sup>, QIUHONG TANG<sup>2</sup>

<sup>1</sup>Pacific Northwest National Laboratory, Richland, WA <sup>2</sup>Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Wednesday, February 26, Joint Land Model and Biogeochemistry Working Groups NCAR, Mesa Lab, Main Seminar Room

### **Motivation**



- Local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water resources at the continental scale, with potential impacts on weather and climate through land-atmosphere feedbacks
- In this study, we aim to assess the impact of irrigated agriculture on spatiotemporal variability of water resources over the conterminous United States using the Community Land Model version 4 (CLM4), by enhancing its irrigation module with a groundwater pumping scheme;



## Irrigation module in CLM4

Sacks, 2011; Leng et al., JGR, 2013

For each day in the growing season, the target soil moisture content for irrigation is:

$$W_{\text{target},i} = (1 - F_{irrig}) \times W_{o,i} + F_{irrig} \times W_{sat,i}$$

where  $W_{o,i}$  is the minimum soil moisture content resulting in no water stress for crops and  $W_{sat,i}$  is the soil moisture content at saturation in that layer.

- The total water deficit ( $W_{deficit}$ ) is caculated as the difference between the target and current soil moisture contents integrated over the entire root zone at 6 am.
- W<sub>deficit</sub> is then administrated to the surface of the irrigated column at a constant rate,  $q_{irrig}$ , over a period of four hours in the same day to mimic a drip irrigation system
- Calibration: perturbing  $F_{irrig}$  with the range of (0,1) and comparing the simulated irrigation demands to Agricultural census

### Implementing a groundwater pumping scheme

Leng et al., JHM, 2014

- $q_{irrig}$  is partitioned to surface- and groundwater withdrawals ( $q_{wdr\_srf}$  and  $q_{wdr\_grd}$ ) based on prescribed ratios.
  - $q_{wdr,srf}$  is subtracted from the total runoff in CLM4
  - $q_{wdr,grd}$  is added as a sink term to update the groundwater storage



Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965



## **Case study over the CONUS**

#### Inputs:

- North America Land Data Assimilation System phase II meteorological forcing.
- MODIS-based Irrigated fractional area map at the 500 m resolution over CONUS (Ozdogan and Gutman 2008);
- Fractions of surface and groundwater withdrawals based on county level NASS Census in 2000.

#### Calibration:

County-level total withdrawal for irrigation

#### Validation

- The MODIS-based ET product (Tang et al. 2009);
- GRACE monthly gridded total water storage (TWS), bias-corrected;
- Area-weighted water level change of the Ogallala aquifer from USGS

| Name                   | Irrigation<br>scheme | Groundwater<br>pumping<br>scheme | Weighted<br>factor (F <sub>irrig</sub> ) | Simulation<br>Period |
|------------------------|----------------------|----------------------------------|------------------------------------------|----------------------|
| IRRIG <sub>nocal</sub> | Yes                  | No                               | Default                                  | 2000                 |
| IRRIG <sub>cal</sub>   | Yes                  | No                               | Calibrated                               | 2000                 |
| CTRL                   | No                   | No                               | —                                        | 1979-2011            |
| IRRIG                  | Yes                  | No                               | Same as<br>IRRIG <sub>cal</sub>          | 1979-2011            |
| PUMP                   | Yes                  | Yes                              | Same as<br>IRRIG <sub>cal</sub>          | 1979-2011            |

### **Distribution of parameters**



Spatial distributions of irrigated fractional area Spatial distributions of the calibrated Firrig 50N 50N 40N 40N 30N 30N 120W 100W 80W 120W 100W 80W 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ratio of groundwater withdrawal Ratio of surface water withdrawal % % 50N 50N 40N 40N 30N 30N 120W 100W 80W 120W 100W 80W March 6, 2014

5 10 20 30 40 50 60 70 80 90

# Comparison of annual irrigation amounts in year 2000 (km<sup>3</sup>/year)





# Simulated ET versus MODIS based ET in the irrigated counties: the effect of calibration





# Effects on groundwater water storage and ET over four selected regions





## Impact on soil moisture over irrigated area in SGP



volumetric soil water (mm3/mm3)

Year





# Comparison with GRACE and USGS observations



#### simulated vs. observed water level change over the Ogallala aquifer



# Completed and on-going numerical experiments at the global scale



Proudly Operated by Battelle Since 1965

#### Inputs:

- CRUNCEP forcing (1991-2010) at 0.5 degree
- A surface dataset at 0.5 degree created based on NCAR raw datasets
- Other inputs are assumed to be consistent with the I2000 condition
- Irrigation fraction and ratio of groundwater withdrawal:

Global Map of Irrigation Areas (GMIA) version 5 (Siebert et al., 2013)

 Calibration: FAO statistics at administrative units level (Siebert et al., 2010)

| Name                          | Irrigation<br>scheme | Groundwater<br>pumping<br>scheme | Weighted<br>factor (F <sub>irrig</sub> ) | Simulation<br>Period |
|-------------------------------|----------------------|----------------------------------|------------------------------------------|----------------------|
| <b>IRRIG</b> <sub>nocal</sub> | Yes                  | No                               | Default                                  | 2000                 |
| <b>IRRIG</b> <sub>cal</sub>   | Yes                  | No                               | Calibrated                               | 2000                 |
| CTRL                          | No                   | No                               | —                                        | 1991-2010            |
| IRRIG                         | Yes                  | No                               | Same as<br>IRRIG <sub>cal</sub>          | 1991-2010            |
| PUMP                          | Yes                  | Yes                              | Same as<br>IRRIG <sub>cal</sub>          | 1991-2010            |

Siebert, S., Henrich, V., Frenken, K., Burke, J. (2013): Update of the Global Map of Irrigation Areas to version 5. Project report, 178 p. Siebert, S., Burke, J., Faurès, J.-M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T. (2010): Groundwater use for irrigation - a global inventory. Hydrology and Earth System Sciences, 14, 1863-1880.



### **Key Datasets for global testing**

#### from Global Map of Irrigation Areas (GMIA) version 5

Fraction of total area irrigated (%)



Fraction of irrigation area irrigated with groundwater (%)





## **Preliminary results**



Proudly Operated by Battelle Since 1965



#### Spatial distribution of calibrated F<sub>irrig</sub>







### **Summary and conclusion**



CLM is enhanced with a groundwater pumping scheme coupled to its irrigation module to simulate land surface water and energy budgets;

- Groundwater pumping can lead to fast depletion and unsustainable groundwater use in agricultural regions that have low recharge rate and deep groundwater table. Therefore, large-scale pumping should be included in earth system models to simulate the effects of irrigation on the regional water cycle.
- The results showed that a CLM4 irrigation simulation can be improved by calibrating model parameter values and more accurate representations of the spatial distribution and intensity of irrigated areas, as well as sources of irrigation water.
- Key areas for model improvement in the future: (1) enhancing the subsurface hydrologic representations, (2) considering efficiency of different irrigation techniques, and (3) linking to river routing and water management modules.
- Effects of groundwater-fed irrigation on global terrestrial hydrology will be assessed upon the completion of planned numerical experiments at the global scale.

### Acknowledgement



- DOE-BER: Earth System Modeling Program
- National Natural Science Foundation of China

## Effects on groundwater table, recharge, and land surface flux



Proudly Operated by Battelle Since 1965



March 6, 2014