

Recent Developments and Research with the Community Land Model Urban (CLMU)

Keith Oleson

NCAR Earth System Laboratory (NESL) Climate and Global Dynamics Division (CGD) Terrestrial Sciences Section (TSS)

CLMU

Outline

> Developments

- Multiple urban landunits within each gridcell
- Improved modeling of anthropogenic heat due to space heating and air conditioning processes
- New diagnostic module of heat/cold stress indices
- Research
 - Exploring representations of heat/cold stress in CLM

Dominant Urban Landunit Expanded to TBD, HD, MD

TBD, HD, MD Properties

Jackson et al. (2010)

Effects of Urban Density on Urban Heat Island

Average Urban – Rural MIN Air Temp (°C)

	JACK_MD	JACK_HD	JACK_TBD
DJF	1.4	2.0	4.1
ALL	1.2	1.7	3.3

N E S L

Old Building Energy Parameterization in CLMU

Objectives

>Develop a more realistic building energy parameterization to yield a "true" internal building air temperature suitable for assessing indoor thermal comfort.

➢Get closer to the global number (tuning but guided by observational data and common sense)

Factors influencing space heating/air conditioning

>New building energy parameterization

≻Heat transfer through roofs/walls (thermal properties) – Feddema V2 urban surface dataset

Refined building thermostat settings

More realistic wasteheat factors (Sivak 2013, ERL)

CLMU Building Energy Model

Year 2005 global building heating/cooling energy demand (TW)

Estimated (IEA and UNEP)	3.1
CLMU Version 1	9.0
CLMU Version 2	3.0

Year 2005 Anthropogenic Heat Flux (W m⁻²) CLMU V2

CLM Forced by CCSM4 RCP8.5 Atmosphere

Zonal Annual Mean Time Series

Exploring Human Heat Stress in Climate Models

¹Keith Oleson, ²Andy Monaghan, ²Olya Wilhelmi, ³Mike Barlage, ⁴Nate Brunsell, ⁴Johannes Feddema, ⁴Leiqiu Hu, ²Daniel Steinhoff, ⁵Jonathan Buzan

¹NESL, Climate and Global Dynamics Division
²RAL, Climate Science & Applications Program
³RAL, Hydrometerological Applications Program
⁴University of Kansas, Department of Geography
⁵University of New Hampshire

Simulations of heat stress with CLM

- WRF used to downscale a CCSM4 20th century and a RCP8.5 ensemble member to provide a consistent set of atmospheric forcing variables
- 1/8th degree simulations for 1986-2005 and 2046-2065
- Diagnostic heat stress indices:
 - NWS Heat Index
 - Apparent Temperature
 - Simplified Wet Bulb Globe Temperature
 - Humidex
 - Discomfort Index

Oleson et al. 2013, Climatic Change

2046-2065 – 1986-2005 JJA Heatwaves

Air Temperature

NWS Heat Index

Heatwaves defined following Meehl and Tebaldi (2004) and Gao et al. (2012).

HumanIndexMod.F90 Developed by Jonathan Buzan, UNH

Single Module with 11 Subroutines Calculates 12 Metrics Requires: T, P, Q

- NWS Heat Index
- Apparent Temperature
- Simplified WBGT
- Humidex
- Discomfort Index

- Potential WB Temperature
- Equivalent Pot. Temperature
- Wet Bulb Temperature
- Temp. Hum. Index Comfort
- Temp. Hum. Index Physiology
- Swamp Cooler Efficiency 80%
- Swamp Cooler Efficiency 65%

CLM Forced by CCSM4 RCP8.5 Atmosphere

Zonal Annual Mean Time Series

Average number of summer days in each heat stress index category Daily Maximum Houston - Medium Density Urban

NWS Heat Index (Smith et al. 2013)

Category	Caution	Extreme Caution	Danger	Extreme Danger
Threshold	> 80°F (26.7°C)	>90°F (32.2°C)	>105°F (40.6°C)	>130°F (54.4°C)
Present-day Urban	4.8	81.6	5.3	0.0
Mid-century Urban	1.2	38.4	52.1	1 day/4 years

Humidex (Masterson and Richardson 1979)

Category	Some Discomfort	Great Discomfort	Dangerous	Imminent Heat Stroke
Threshold	 30°C	∐ 40°C	 46°C	_54°C
Present-day Urban	15.8	73.2	2.5	0.0
Mid-century Urban	4.0	60.3	27.4	1 day/5 years

Discomfort Index (Epstein and Moran 2006)

Category	No Heat Stress	Mild Sensation of Heat	Moderately Heavy Heat Load	Severe Heat Load
Threshold	< 22 units	∏22 units	>24 units	> 28 units
Present-day Urban	0.2	1.1	10.1	80.5
Mid-century Urban	0.0	0.1	2.8	89.0

Humans in CESM/CLM

Universal Thermal Climate Index (UTCI; utci.org)

Bröde et al. 2012

Thermal strain index calculated by PCA as a single dimensional representation of the multidimensional dynamic response of the physiological model.

UTCI equivalent temperature for given combination of wind, radiation, humidity and air temperature is defined as the air temperature in the reference environment, which produces the same strain index value.

CLMU Future Work

- Future urban dynamic urban landunits transitions between urban density types; how will cities change – more energy efficient buildings and urban sprawl versus densification
- Incorporation of UTCI
- Building energy NREL Collaboration: EnergyPlus/BeOpt -> Reduced-Order Model -> CLMU
- Suburban model (low density (LD) urban)
- Integrated urban vegetation model (transpiration, shading of building by trees)
- Irrigation for pervious fraction

Thank You

The NESL Mission is: To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and, To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation