





## Ocean Spinup in CESM. Current issues and discussion.

### Cécile Hannay, Rich Neale and Joe Tribbia Atmospheric Modeling and Predictability (CGD/NCAR)

Keith Lindsay and Gokhan Danabasoglu Oceanography Section (CGD/NCAR)

## Outline

- Methods to initialize CESM
- Spin up issues with the Spectral Element dynamical core
- What controls the SSTs ?
- Take home message and discussion

## Ways to initialize the ocean in **CESM**



## **Pros and Cons of each initialization**

|                      | Pros                             | Cons                                                                                                                                                                                              |
|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Levitus              | "Clean" way to initialize        | Each run requires long spin-up.<br>- At each experiment we will repeat<br>this long spunup<br>- More challenging to tune (*).<br>Levitus is present day ocean. Is it best<br>to initialize 1850 ? |
| Long spunup<br>ocean | Fast to adjust<br>Easier to tune | The model has drifted far away from<br>reality.                                                                                                                                                   |

\* tune = adjust parameters ("tuning parameters") to achieve TOA radiative balance  $\sim 0 \text{ W/m}^2$ 

## What happens in the first 100 years of the run?

#### **CESMI.I:**Finite volume (FV)



When starting from spunup ocean, model quickly adjusts (20 years)



When starting from Levitus, model spinups longer (100 years).

## **Proposed strategy to tune the model**

(I) Use "long spunup" initialization, to obtain tuning parameters to adjust TOA balance ~ 0 W/m2 CCSM4 CESMI.I CESMI.2 I300 yrs Several 100s yrs Several 100s yrs

(2) Use tuning parameters obtained in (1) and restart the run from Levitus

#### (3) Retune "along the way" if needed to maintain TOA balance $\sim 0 \text{ W/m2}$



## What happens in the first 100 year of the run?

### **CESMI.I:**Finite volume (FV)



When starting from spunup ocean, model quickly adjusts (20 years)



When starting from Levitus, model spinups longer (100 years). Proposed strategy was quite successful in CESMI.I.

**Used for "large-ensemble"** 

## What happens in the first 100 year of the run?

#### **CESMI.I:** Finite volume (FV)



When starting from spunup ocean, model quickly adjusts (20 years)



When starting from Levitus, model spinups longer (100 years). **CESMI.2: Spectral element (SE)** 

Then comes **CESMI.2** and its new dynamical core

## What happens in the first 100 year of the run?

#### **CESMI.I:** Finite volume (FV)

### CESMI.2: Spectral element (SE)

RESTOM: avg=0.0832254(W/m2)

TS: avg=286.952(K)

287.20



When starting from spunup ocean, model quickly adjusts (20 years)



When starting from Levitus, model spinups longer (100 years).





"Houston, we have problem"

## **SST** biases

#### Compared to HadISST/OI.v2 (pre-industrial)

3 2 1 0.5 0.2 0 -0.2 -0.5 -1 -2 -3 -4 -5

#### Finite Volume: Spunup ocean



#### **Finite Volume: Levitus**



#### Spectral Element: Spunup ocean



Similar bias that FV except SE Pacific.

#### **Spectral Element: Levitus**



SSTs stabilize but too cold compared to obs SST: 0.5K colder than FV

## **Ocean temperature bias**

#### T bias = Tocn - Levitus

#### Finite Volume: Levitus



#### When starting from Levitus:

- cools near the surface
- warms around 750 meter
- exacerbated in SE

When starting from long spunup ocean: - the 750-meter warm layer is present at initialization

## 750-meter warm layer is a signature of Spectral Element (present in every run)

#### **Spectral Element : Levitus**



#### Spectral Element: Spunup ocean



## Is 750-meter warming uniform over ocean?

#### Bias at 750m = T 750-m - Levitus

#### Finite Volume (yrs 70-89)



#### Spectral Element (yrs 70-89)



### Warming is not uniform: areas of warming and cooling

Warming also exists in Finite Volume but cooling compensates warming globally.

## Is 750-m warming correlated to SSTs cooling?

#### Bias at 750m = T 750-m - Levitus

#### Finite Volume (yrs 70-89)

#### dT = 0.28K RMSE=0.72K Level =787m



#### SST bias = SST - Levitus

#### Finite Volume (yrs 70-89)

#### dT = -0.43K RMSE=0.93K Level =5m



#### Spectral Element (yrs 70-89)



#### Spectral Element (yrs 70-89)

#### dT = -0.93K RMSE=1.18K Level =5m Potential Temperature degC 90N 60N 30N 30S 60S 90S 30F 120F 150E 180 150W 120W 90W 60W .30W 0 30E 90F -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

## What is different (Finite Volume Spectral Element) ?

#### **Tuning parameters**

|           | FV     | SE    |
|-----------|--------|-------|
| rhminl    | 0.8925 | 0.884 |
| rpen      | 10     | 5     |
| dust_emis | 0.35   | 0.55  |

#### Topography

New software to generate topography (accommodate unstructured grids and enforce more physical consistency)

#### Climate

SST colder in SE than FV Atmosphere is drier in SE that FV Surface stress in Southern Ocean

#### Grid differences at high latitudes



Red: CAM-SE grid Blue: CAM-FV grid (at about 2 degree)

Courtesy: Peter Lauritzen

What's the impact on physics and remapping?



TAUX in CAM-SE:Location: maximum moves northAmplitude increases

## Surface stress

#### **Observed surface stress**

#### Large-Yeager (2009)



#### Significant differences in surface stress

- Southern oceans
- Close to Greenland

#### Surface stress errors

CAM-FV - Obs



Surface stress differences



## Surface stress and SSTs

#### **Difference between CAM-SE and CAM-FV**



#### **Correlation between SST and surface stress differences**

## What controls SST cooling in SE?

## Inventory of differences (SE $\Leftrightarrow$ FV)

- Tuning parameters
  - Dust emission factor
  - Cloud tuning (rhminl, rpen)
- Topography
- Remapping (ocn 🗇 atm)
- Surface stresses



# Can we identify differences responsible of the SSTs cooling in SE ?

## What controls SST cooling in SE?

## Inventory of differences (SE $\Leftrightarrow$ FV)

- Tuning parameters
  - Dust emission factor
  - Cloud tuning (rhminl, rpen)
- Topography
- Remapping (ocn 🗇 atm)
- Surface stresses
  - Turn off turbulent mountain stress
  - Increase turbulent mountain stress
  - Change gravity wave

# Can we identify differences responsible of the SSTs cooling in SE ?



## What controls SST cooling in SE?

## Inventory of differences (SE $\Leftrightarrow$ FV)

- Tuning parameters
  - Dust emission factor
  - Cloud tuning (rhminl, rpen)
- Topography
- Remapping (ocn 🗇 atm)
- Surface stresses
  - Turn off turbulent mountain stress
  - Increase turbulent mountain stress
  - Change gravity wave

## Can we identify differences responsible of the SSTs cooling in SE ?











40⁰N

40

80°N

80



## Take home message

**Spinup issue with the Spectral Element dycore** 

When starting from Levitus

- SSTs are cooling too much
- Formation of 750m warm layer

Wind stress curl anomaly (from FV) responsible of upwelling anomaly at 50S. This leads to SSTs cooling anomaly in Southern ocean.

**Next step: compare with CORE** 

• Extra slides

SST, Global, anomaly from FV, 0001-0010





## Can we adjust ocean vertical mixing?

#### **Ocean Temperature Bias**

Temperature profile in the ocean



## **Can we adjust ocean vertical mixing?**

#### **Ocean Temperature Bias**



Temperature profile in the ocean

If there is too much mixing

# Wind stress seen by the ocean is reduced by 30% south of 35S.

#### Change in SSTs when wind stress reduced



SST bias: model - HadISST/OI.v2



Changing the maximum amplitude reduces the SST cooling but the SSTs are still much colder than in FV