Community Ocean Vertical Mixing (CVMix) Parameterizations

M. Levy¹, G. Danabasoglu¹, S. Griffies², T. Ringler³, A. Adcroft², R. Hallberg², D. Jacobsen³, and W. Large¹

> ¹National Center for Atmospheric Research Boulder, CO

²Geophysical Fluid Dynamics Laboratory Princeton, NJ

³Los Alamos National Laboratory Los Alamos, NM

OMWG Meeting

Boulder, CO January 16, 2014

Vertical Mixing

- Overview
- Current State of Mixing
- What CVMix Brings to the Table
- Types of Mixing
- Results (CVMix in Stand-alone Mode)
- Final Remarks
 - Progress / Timeline
 - Summary
 - References

Why is Vertical Mixing Important to Ocean Models?

http://weather.unisys.com/archive/sst/sst-131229.gif (Dec 29, 2013)

Basics

- Sea surface temperature (SST) has a major role in atmosphere ↔ ocean energy exchange
- Vertical mixing is one of many processes affecting SST
 - Occurs on scales that are not resolved by current ocean models, need to use parameterization instead
- Other physical quantities (tracers, salinity, etc) also affected by mixing

Mixing in Ocean Models

Current State

- Numerous techniques for parameterizing the mixing process
- Model developers choose their favorite parameterization(s) and code them up as part of the ocean model

CVMix Project

- Our goal: produce an easy-to-use library containing a range of parameterizations
- Secondary goal: provide a stand-alone driver to test the library on its own
 - Note: we use the term "stand-alone driver" a bit loosely. CVMix can compute single-column diffusivities given proper input, but lacks the capability to see how diffusivities change over time.

Why CVMix?

Driving Force

Breckenridge 2012: MPAS-O did not have a KPP module yet and MOM5 was using an outdated implementation that GFDL wanted to improve on for their next generation model.

• CVMix is now used in development of MPAS-O and MOM6, and will [eventually] replace the mixing modules in POP.

Other Benefits

- Reduce duplicate code for example, static mixing occurs as a step in many parameterizations
- SEG is working to include non-POP / non-data ocean models in CESM
 - Vertical mixing library allows [some] physics to stay the same even if dynamics change
 - Allow more detailed model inter-comparisons

Vertical Mixing Overview

- Data on cell centers and interfaces
- Center index $kt = 1 \dots$ nlevs
- Interface index kw = 1... nlevs+1
- Depth z
 - η at surface
 - 0 at average sea level
 - -H(x, y) at bottom (positive up!)

What Does a Vertical Mixing Parameterization Look Like?

- Inputs: combination of parameters and physical values in column
- Outputs: viscosity (ν) and tracer diffusivity (κ) coefficients on cell interfaces

M. Levy (mlevy@ucar.edu)

[Some] Mixing Parameterizations

Static background mixing

- Constant mixing
- Bryan-Lewis (1979)
- Henyey et al. (1986)

Shear-induced mixing ("Richardson number mixing")

- Pacanowski and Philander (1981)
- Large et al. (1994), henceforth LMD94
- Jackson et al. (2008)

Tidal mixing

- Simmons et al. 2004
- Polzin (2009) / Melet et al. (2013)
- Double diffusion mixing (Schmitt, 1994 / LMD94 / Danabasoglu et al., 2006)
- S K-profile parameterization ("KPP"; LMD94)
- Solution Vertical convective mixing (density based as well as Brunt-Väisälä)

Blue indicates method is already in package.

M. Levy (mlevy@ucar.edu)

Vertical Mixing

Bryan-Lewis Profile

Want diffusivity to increase towards bottom of ocean.

At right: diffusivity profile of two columns representing columns in different latitudes.

Diffusivity and Viscosity Depend on Depth

$$\kappa = c_0 + \frac{c_1}{\pi} \tan^{-1} \left(c_2((-z) - c_3) \right)$$
$$\nu = \Pr \kappa$$

Shear Mixing

Want diffusivity to decrease as Richardson number (Ri) increases; $\kappa = 0$ if Ri \geq Ri₀ = 0.7.

At right: The stand-alone driver produces the shear mixing diffusivity profile plot from Fig. 3 of LMD94.

Diffusivity and Viscosity Depend on Richardson Number

$$\kappa = \begin{cases} \kappa_0 & \operatorname{Ri} \leq 0\\ \kappa_0 [1 - (\operatorname{Ri}/\operatorname{Ri}_0)^{p_1}]^{p_2} & 0 < \operatorname{Ri} < \operatorname{Ri}_0\\ 0 & \operatorname{Ri} \geq \operatorname{Ri}_0 \end{cases}$$
$$\nu = \operatorname{Pr} \kappa$$

Double Diffusion Mixing

Two regimes

Determine which regime we are in via stratification parameter

$$\mathsf{R}_{\rho} = \frac{\alpha}{\beta} \left(\frac{\partial \Theta / \partial z}{\partial S / \partial z} \right),$$

where α is the thermal expansion coefficient and β is the haline contraction coefficient:

- Salt Fingering $(\partial S/\partial z > 0 \text{ and } 1 < R_{\rho} < R_{\rho}^{0})$; salt water above fresher water \Rightarrow salt water will sink
- ② Diffusive Convective Instability ($\partial \Theta / \partial z < 0$ and $0 < R_{\rho} < 1$); cold water above warm water ⇒ cold water will sink

And that's not all...

Double diffusion also introduces idea of different diffusivity for temperature and salinity (κ_{Θ} and κ_{S} , respectively).

Double Diffusion Mixing

Diffusivity profiles for the two regimes (Fig. 4 in LMD94).

Salt-Fingering Regime

$$\kappa_{\mathcal{S}} = \kappa_0 \left[1 - \left(\frac{\mathsf{R}_{\rho} - 1}{\mathsf{R}_{\rho}^0 - 1} \right)^{\rho_1} \right]^{\rho_2}$$

$$\kappa_{\Theta} = 0.7\kappa_{\mathcal{S}}$$

Diffusive Convective Regime

$$\kappa_{\Theta} = \nu_{\text{mol}} \cdot c_1 \exp\left(c_2 \exp\left[c_3 \frac{1 - \mathsf{R}_{\rho}}{\mathsf{R}_{\rho}}\right]\right)$$

$$\kappa_{S} = \max(0.15 \mathsf{R}_{\rho}, 1.85 \mathsf{R}_{\rho} - 0.85) \kappa_{\Theta}$$

Tidal Mixing

$$\kappa = \frac{1}{\rho N^2}$$

$$F(x, y, z) = \frac{e^{-z/\zeta}}{\zeta(e^{H(x, y)/\zeta} - e^{-\eta(x, y)/\zeta})}$$

M. Levy (mlevy@ucar.edu)

Vertical Mixing

Bouyancy, velocity, and bulk Richardson values (Fig. C1 in LMD94).

The boundary layer depth (h) computed based on bulk Richardson number

$$Ri_b(z) = \frac{-z(B_r - B(z))}{|\mathbf{V}_r - \mathbf{V}(z)|^2 + \mathbf{V}_t^2(z)}$$

 \mathbf{V}_t is unresolved velocity shear, see Eq. (23) in LMD94.

KPP Mixing

Flux profiles ϕ (Fig. B1 in LMD94).

Inside the boundary layer, diffusivity is given by

$$\nu | \kappa = h w_{m|s}(-z/h) G(-z/h)$$

 $w_{m|s}$, the turbulent velocity scale for momentum or scalar quantities, is inversely proportional to $\phi_{m|s}$; G is a shape function defined to ensure a smooth κ .

M. Levy (mlevy@ucar.edu)

What's Been Done and What's Coming

Progress over last 18 months

- Infrastructure for the stand-alone drivers (building, IO, etc) is done
- Modules for the mixing methods mentioned in blue on a previous slide have been coded up
- Testing has begun in MOM, POP, & MPAS-O

Still to do before public release

- More testing for KPP (issues with vertical resolution?)
- Ocument APIs
- Ocument process for adding modules to library
 - Likely will involve making code available on github, using push / pull requests
- Formalize unit tests, regression tests, and examples to allow easy porting

- Multi-lab collaboration to build vertical mixing library
- No change in POP interface, but changes "under the hood"
- Ability to run as a stand-alone / single-column executable
- Will be made available to public with a well-documented process allowing others to add modules to the library

References

1	Bryan, K. and L. J. Lewis, 1979: A water mass model of the world ocean. <i>Journal of Geophysical Research</i> , 84, 2503-2517.
2	Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. <i>Journal of Climate</i> , 19 , 2347-2365.
3	Henyey, F., J. Wright, and S. M. Flatte, 1986: Energy and action flow through the internal wave field: an eikonal approach. <i>Journal of Geophysical Research</i> , 91 , 8487-8496.
4	Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. Journal of Physical Oceanography, 38 , 1033-1053.
5	Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. <i>Reviews of Geophysics</i> , 32 , 363-403.
0	Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. <i>Journal of Physical Oceanography</i> , 43 , 602-615.
0	Pacanowksi, R. C. and G. Philander, 1981: Parameterization of vertical mixing in munerical models of the tropical ocean. <i>Journal of Physical Oceanography</i> , 11 , 1442-1451.
8	Polzin, K. L., 2009: An abyssal recipe. Ocean Modelling, 30, 298-309.
9	Schmitt, R. W., 1994: Double diffusion in oceanography. Annual Review of Fluid Mechanics, 26, 255-285.
0	Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. <i>Ocean Modelling</i> , 6 , 245-263.