

Southern Ocean biases

Matthew C. Long Gokhan Danabasoglu, Peter Gent, and William Large

Climate and Global Dynamics Division National Center for Atmospheric Research

CESM Ocean Model Working Group meeting

16 Jan 2014

Outline

Southern Ocean biases

Weak tracer uptake (CFCs,C_{ant})

Shallow mixed layer depths

Hypotheses:

Problems with:

- 1. missing forcing;
- 2. vertical physics;
- 3. mesoscale mixing.

Regional-mean mixed layer depths

Mechanisms controlling uptake in the Southern Ocean Vertical CFC11 transport

within Antarctic Circumpolar Current

- GM-bolus term opposes Eulerian-mean advection;
- Diapycnal mixing and isopycnal diffusion (Redi) dominate transport into the interior.

Seasonal handoff: boundary layer to isopycnal mixing

Vertical fluxes in ACC

Missing physics? September mixed layer depth: Obs and biases in CORE-forced runs

Downes et al. in prep

Hi-res ML biases

August-October MLD biases

 0.25° Community Atmosphere Model (CAM5, spectral element) 0.1° Parallel Ocean Program (POP2, 62 levels)

480

440

400

360

320

280

240

200

160

120

80

40

0

-40 -80

-120 -160

-200

-240

-280

-320

-360

-400

-440 -480

Vertical physics: K profile parameterization

Monin-Obukhov similarity theory

The vertical variation of turbulence characteristics in the **'surface layer'** depends only on the surface momentum flux (u^*) , buoyancy flux (B_f) , and distance from the boundary (d).

Key parameters

$$u^* = (|\tau_0|/\rho_0)^{1/2}$$
 $S^* = -\overline{ws_0}/u^*$ $L = u^{*3}/(\kappa B_f)$
friction velocity scalar fluctuation scale Monin-Obukhov length

Stability functions

$$\phi_m(\zeta) = \frac{\kappa d}{u^*} \frac{\partial U}{\partial z} \text{ (momentum)}$$

$$\phi_s(\zeta) = \frac{\kappa d}{S^*} \frac{\partial S}{\partial z} \text{ (scalar)}$$

are nondimensional and relate momentum and scalar fluxes to mean gradients, expressed as a function of the stability parameter: $\zeta = d/L$.

Vertical physics: K profile parameterization $w_x/(\kappa u^*)$ $G(\sigma)$ 0 Turbulent fluxes ε $\overline{wx}(d) = -K_x(\frac{\partial X}{\partial z} - \gamma_x)$.2 Diffusivity ($K \sim U \cdot L$) $K_{x}(\sigma) = w_{x}(\sigma) h G(\sigma)$ σ $(\sigma = d/h)$.6 Velocity scale $w_{x}(\sigma) = \frac{\kappa u^{*}}{\phi_{x}(\sigma h/L)}$ -5 = h/L.8 $(\zeta = d/L = \sigma h/L)$ 1.0

"In unstable conditions the turbulent velocity scales beyond the surface layer are assumed to remain constant at their $\sigma = \epsilon$ values. Without this constraint, unstable w_x values would become very large..."

Sensitivity to doubling w_x

 $2 \times w_{v}$: $\Delta HMXL$

Sensitivity to $\epsilon = 1$ (removing limits)

Zonal-mean σ_0

Unlimited with GM-Redi change

Representing w_x : Nondimensional flux profiles

Large et al. 1994

¹Large et al. 1994

Moeng & Sullivan 1994

Unstable to near neutral regions Stability parameter (1/L < 0)

Proposal: surface layer depth as a function of stability

Surface layer depth parameterization

MLD change

Prognostic thickness and isopycnal mixing coefficient

Horizontal uniformity in surface layer, attenuation with depth

Large-scale dynamics control mixed layer biases

Mixing tensor diagnosed in hi-res POP

Fox-Kemper et al. 2013

Prescribed diffusivity results

Summary

- Model solutions are sensitive to turbulent velocity scale in KPP, which has weak observational constraints;
- Surface layer thickness is likely a function of the stability regime;
- Southern Ocean mixed layers are sensitive to deep isopycnal and thickness mixing; need improved scheme governing horizontal and vertical variation;
- Waves may be an important missing forcing.