CHARACTERIZING TURBULENCE ANISOTROPY, COHERENCE, AND INTERMITTENCY AT A PROSPECTIVE TIDAL ENERGY SITE

Katherine McCaffrey

Department of Atmospheric and Oceanic Sciences,

Cooperative Institute for Research in Environmental Sciences

 Baylor Fox-Kemper, Dept. of Geological Sciences, Brown University, CIRES
Peter Hamlington, Dept. of Mechanical Engineering, CU Boulder
Jim Thomson, Applied Physics Laboratory, Univ. of

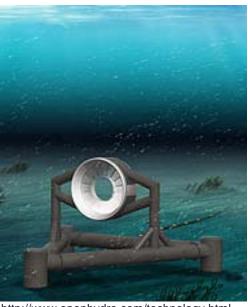
Washington

Outline

- Introduction to Tidal Energy
- Introduction to the Problem
- Anisotropy, Coherence, and Intermittency
 - Observations and Metrics
 - Parameterization Results
- Preliminary Statistical Model Results

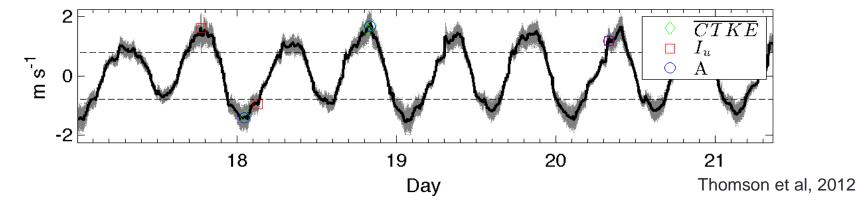
Tidal Energy Resource

- Clean, renewable, predictable energy source; close to population centers
- DOE Resource Assessment: potential 250 TWh/year electricity generation (~6% of US usage)


Tidal Energy Conversion Technology

- In-Stream Turbine in the flow, invisible from surface
- Similar technology to a wind turbine, though with many different designs

http://www.infoniac.com/environment/world-s-biggest-tidal-turbine-to-bebuilt-in-scotland.html


http://www.openhydro.com/technology.html

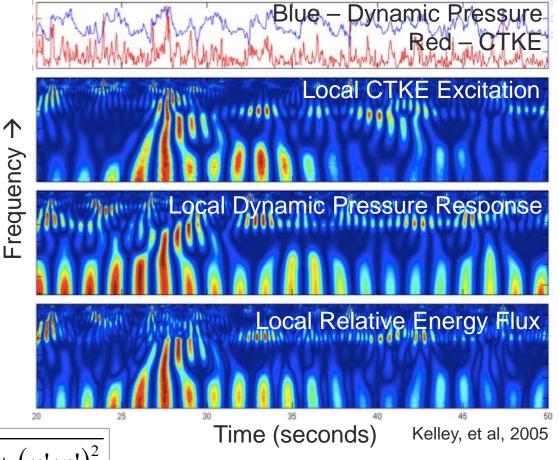
Goals

- Take the knowledge and experiences of the wind energy industry to further the development of tidal energy, focusing on turbulence.
- Do a thorough physical description of the turbulence that will affect a tidal turbine
 - Site classification for decision-making
 - Describe realistic turbulence with metrics that can be used to improve models
 - Turbulent in-flow generators: National Renewable Energy Laboratory's TurbSim/pyTurbSim
 - Turbine-scale dynamical models: LES

Nodule Point, Puget Sound, WA

Turbine site			
Port Townsend	Acoustic Doppler Velicometer	Latitude	N 48 01.924'
		Longitude	W 122 39.689'
		Depth	22m
		Dates	Feb 17-21, 2011
		Sampling Frequency	32 Hz
		Noise	0.02 m/s
		Proposed Hub Height	4.7m
		Hub Height Max. Velocity	1.8 m/s

Turbulence Metrics


 \uparrow

 Turbulence effects on power production: turbulence intensity

$$I_{u} = \frac{\sigma_{u}}{\langle u \rangle} = \frac{\sqrt{\langle u'^{2} \rangle - n^{2}}}{\overline{u}}$$

 Turbulence effects on turbine mechanics (loads and subsequent gear box failures): coherent turbulent kinetic energy

$$CTKE = \frac{1}{2}\sqrt{(u'v')^2 + (u'w')^2 + (v'w')^2}$$

Turbulence Metrics One component limit 0.6 Anisotropy Tensor 0.5 $a_{ij} = \frac{u'_{i}u'_{j}}{2k} - \frac{\delta_{ij}}{3}, \quad k = \frac{u'_{i}u'_{i}}{2}$ Two component limit 0.4 0.3 Invariants: $I = a_{ii}$ $II = a_{ij}a_{ji}$ 0.2 Axis-symmetric Limit 0.1 Three component limit $III = a_{ij}a_{in}a_{jn}$ _0.05 0.05 0.15 0.2 0 0.1 ш

8

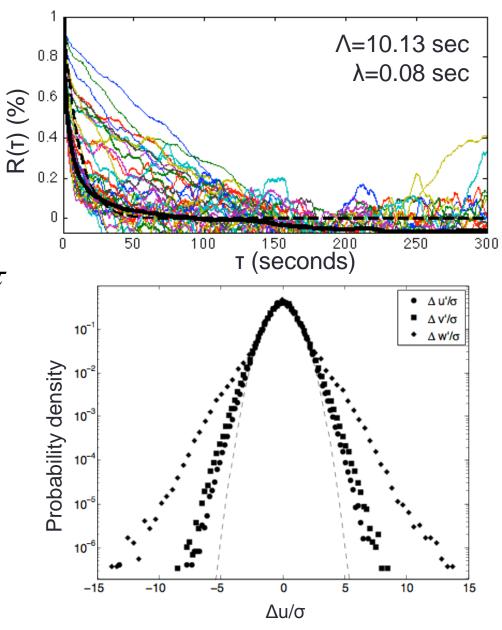
- Anisotropy Magnitude
 - CTKE-like, but built from invariants
 - Independent of chosen coordinate system
 - Captures anisotropy from shear and normal Reynolds stresses

$$A = k\sqrt{II}$$

Coherence & Intermittency

Temporal Autocorrelation

$$R(\tau) = \frac{\overline{u'(t)u'(t+\tau)}}{\overline{u'^2}}$$

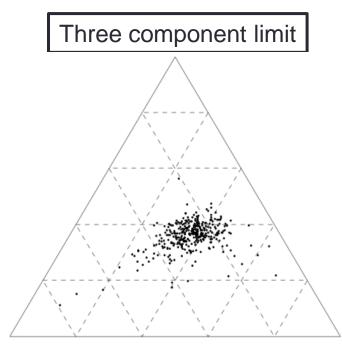

• Integral Scale
$$\Lambda_t = \int_0^\infty R(\tau) d\tau$$

Taylor Scale

$$\lambda_t = -2\left[\frac{d^2R}{d\tau^2}\right]^{-1}$$

Probability density function

Turbulence isn't always constant; "events" occur.



Anisotropy

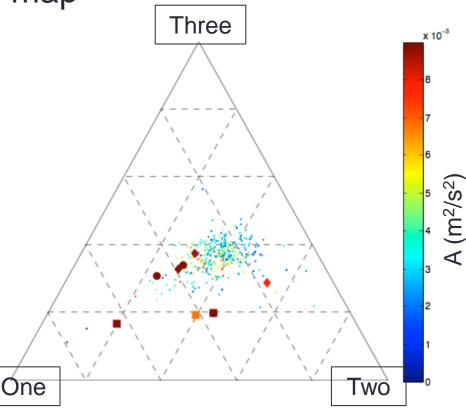
 Improvement to the anisotropy analysis: For eigenvalues, λ_i, of the anisotropy tensor, a_{ij}, ordered from greatest to least, the barycentric coordinates are defined by:

$$C_{1c} = \lambda_1 - \lambda_2$$
$$C_{2c} = 2(\lambda_2 - \lambda_3)$$
$$C_{3c} = 3\lambda_3 + 1$$

- C_{1c}: one-component limit linear
- C_{2c}: two-component limit planar
- C_{3c} : three-component limit isotropic

Banerjee et al 2007

One component limit


Two component limit

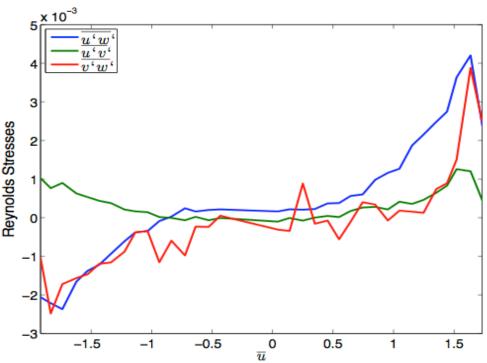
Parameterization

The anisotropy magnitude, *A*, captures the:

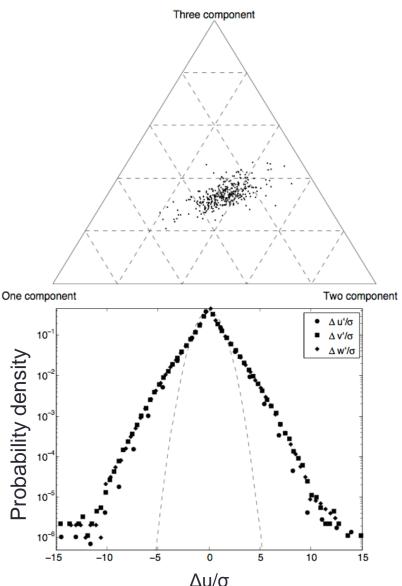
- behavior of CTKE
- coherence of the correlation function.
- shape from the barycentric map
- intermittency in the pdf

	λ	٨
l _u	0.596	0.450
CTKE	0.680	0.017
A	0.884	0.317

Next step: How well do models generate realistic turbulence?

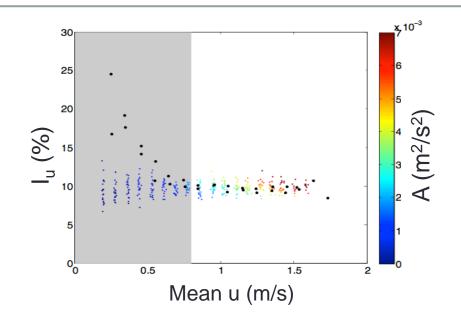

How do the statistics calculated from the model output compare to those from the observations?

- The NREL pyTurbSim (or "HydroTurbSim") model (Jonkman & Kilcher) creates stochastic turbulence for tidal energy applications.
- The NCAR LES model (Sullivan, McWilliams & Moeng) is a dynamical atmospheric model adapted for tidal flow (Alexander & Hamlington, in progress).

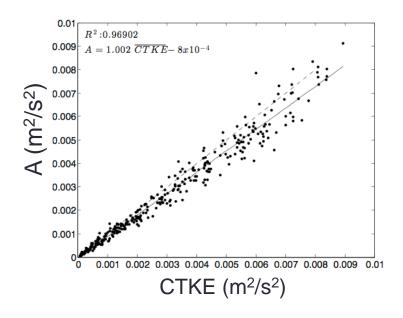

Introduction to pyTurbSim

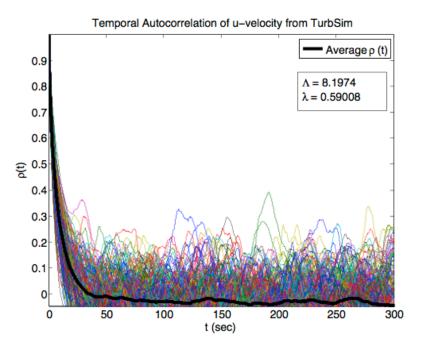
- Inputs:
 - Background mean flow profile
 - Turbulent spectral density curve based on observations
 - Turbulence intensity standard
 - Reynolds stresses
- Method:
 - Inverse fast Fourier transform
 - Spatial correlation function
- Outputs:
 - Two-dimensional snapshots in time, and through Taylor's hypothesis (L~U*t), the third dimension

Latitude	u'w'
Depth (RefHt)	u'v'
U _{RefHt}	v'w'
Time step ("Sampling Frequency")	TIDAL Turb Model based on observations
Hub Height	Mean Profile – H ₂ O log



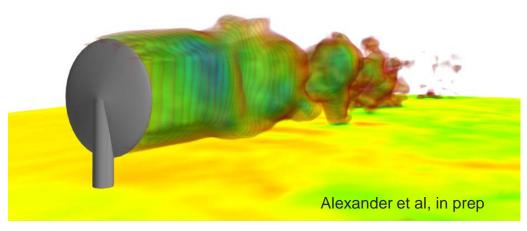
TurbSim Results




Barycentric map is correct, but the turbulence intensity is not, and pdfs show no anisotropy.

To examine: how is the anisotropy captured in the normal stresses versus shear stresses?

TurbSim Results



Extreme events seen in observations are not evident in A, CTKE, or autocorrelations.

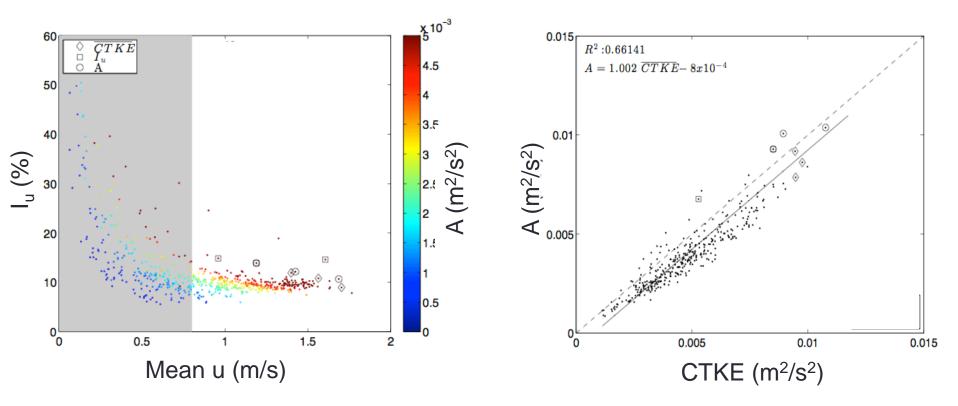
Is it possible for a stochastic model to contain these anomalous events?

Large-Eddy Simulations

- With these inherent problems with a stochastic model, can a large-eddy simulation create more realistic turbulence?
 - The NCAR LES model (Sullivan, McWilliams & Moeng) is a dynamical atmospheric model adapted for tidal flow (Alexander & Hamlington, in preparation).
- Can LES create the turbulent events, and capture the anisotropy

Conclusions

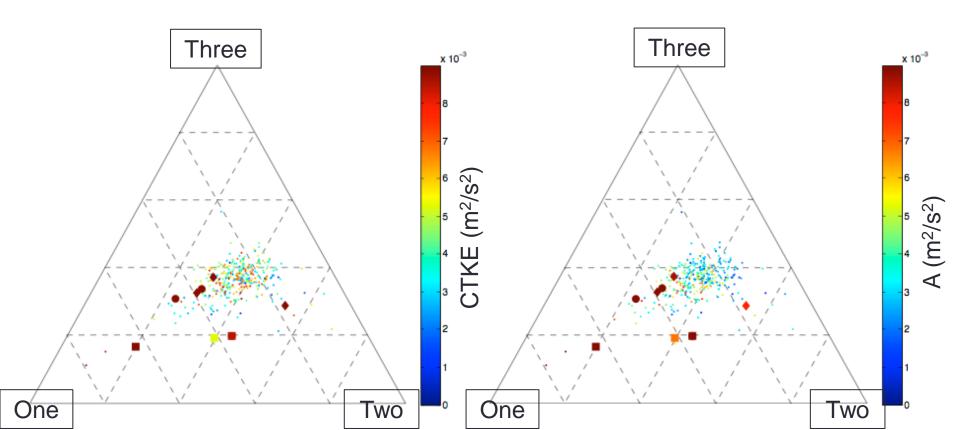
- A new, tensor-invariant metric, the anisotropy magnitude, is introduced to physically describe turbulence from ADV measurements.
- The anisotropy magnitude does a better job at representing intermittency, coherence, and anisotropy than the previously-used turbulence intensity and CTKE.
- pyTurbSim captures the anisotropy in a tidal flow in the shear stresses (defined by input), but not normal stresses (defined in model).
- Current work: How statistics calculated from LES model data compare to those from the observations?

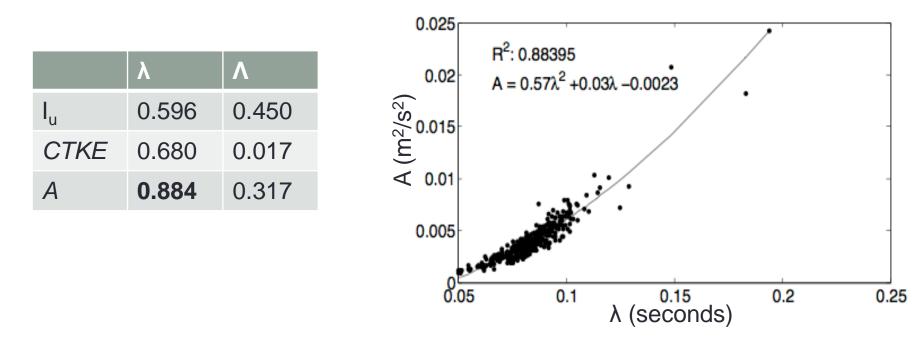

Thank you!

A big "thank you" to Levi Kilcher of NREL-NWTC for his input on the data analysis, and for providing the pyTurbSim model. Also, the APL-UW staff for their work of field data collection: Joe Talbert, Alex deKlerk, and Capt. Andy Reay-Ellers; and Brian Polagye (UW) and Marshall Richmond (PNNL) for experiment planning.

Project support by the NOAA-ESRL/CIRES Graduate Research Fellowship, as well as the DOE Northwest National Marine Renewable Energy Center, NSF 1258907 and 0934737.

Parameterization


- How do we represent how "turbulent" a location is?
 - Is I_u, CTKE, or A better at representing intermittency, coherence, and anisotropy?


Parameterization: Shape

The highest instance of each parameter (large shapes) is close(r) to the one-component limit.

- I_u only measures one component (u)
- A is better than CTKE

Parameterization

- The anisotropy magnitude, *A*, captures:
 - the behavior of CTKE
 - the intermittency in the pdf
 - the shape from the barycentric map
 - the coherence of the correlation function.