Simulation of ¹³⁷Cs activities off the Fukushima coast

Kazuhiro Misumi, Daisuke Tsumune, Takaki Tsubono and Yutaka Tateda

Central Research Institute of Electric Power Industry

Atmospheric deposition

Terada et al. (2012)

Direct release to the ocean

Buesseler et al. (2011)

Direct release to the ocean

Buesseler et al. (2011)

Direct release to the ocean

Buesseler et al. (2011)

ROMS (Fukushima)

- Domain: 34°54' N-40°00' N; 139°54' E-147°00' E
- Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)
- Scheme: 3rd-order upwind both momentum & tracers Biharmonic viscosity & diffusivity; KPP

ROMS (Fukushima)

Domain: 34°54' N-40°00' N; 139°54' E-147°00' E

Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)

Scheme: 3rd-order upwind both momentum & tracers Biharmonic viscosity & diffusivity; KPP

Forcings

Surface boundary

Reanalysis data (5 km x 5 km) using WRF & JMA data

ROMS (Fukushima)

Domain: 34°54' N-40°00' N; 139°54' E-147°00' E

Resolution: 1 km x 1 km, 30 layers in s-coordinate (Max. 1000 m)

Scheme: 3rd-order upwind both momentum & tracers Biharmonic viscosity & diffusivity; KPP

Forcings

Surface boundary

Reanalysis data (5 km x 5 km) using WRF & JMA data

Ocean Interior

JCOPE2 reanalysis data (1/10° x 1/10°) (Miyazawa et al., 2009)

Temp. & Salinity (in the whole domain) Sea Surface Height & Horizontal Currents (to calculate the lateral boundary condition)

Atmospheric deposition of ¹³⁷Cs

A ¹³⁷Cs release scenario to the atmosphere (Terada et al., 2012)

Atmospheric deposition of ¹³⁷Cs

A ¹³⁷Cs release scenario to the atmosphere (Terada et al., 2012)

Atmospheric deposition of ¹³⁷Cs

A ¹³⁷Cs release scenario to the atmosphere (Terada et al., 2012)

Nearest grid point from 1F NPP

Mar. 26-Apr. 6

Mar. 26-Apr. 6

Mar. 26-Apr. 6

$$f = \frac{\overline{137} \text{Cs}_{\text{obs}}}{\overline{137} \text{Cs}_{\text{model}}}$$

$$f = \frac{\overline{137} \text{Cs}_{\text{obs}}}{\overline{137} \text{Cs}_{\text{model}}}$$

Release rate =
$$f \times 1$$
 Bq sec⁻¹
= 2.2×10^{14} Bq day⁻¹

After Apr. 6, we assumed that the ¹³⁷Cs release rates follow the temporal trend of the observed ¹³⁷Cs activities nearby 1F NPP.

After Apr. 6, we assumed that the ¹³⁷Cs release rates follow the temporal trend of the observed ¹³⁷Cs activities nearby 1F NPP.

After Apr. 6, we assumed that the ¹³⁷Cs release rates follow the temporal trend of the observed ¹³⁷Cs activities nearby 1F NPP.

Total ¹³⁷Cs activity: **3.6 PBq** after 1 yr from the accident

Comparison with Buesseler et al. (2012)

Surface ¹³⁷Cs activities on June, 2011

Comparison with Buesseler et al. (2012)

Surface ¹³⁷Cs activities on June, 2011

Comparison with Buesseler et al. (2012)

Surface ¹³⁷Cs activities on Dec., 2011

Control Case

A lab. experiment showed a slow adsorption rate of Cs to marine particulate matters.

Elements	Adsorption rate constants (kg ⁻¹ day ⁻¹)
Cs	304
Fe	25000
Th	130000

Nyffeler et al. (1984)

Possible mechanisms transferring ¹³⁷Cs into sediments

Possible mechanisms transferring ¹³⁷Cs into sediments

We developed a sediment model based on Periáñez (2008).

Dainly mean ¹³⁷Cs activities in the bottom water (Tsumune et al., 2013)

Sediment (C_{sed})

We developed a sediment model based on Periáñez (2008).

$$k_1 = \chi S = \chi \frac{3L}{RH} \phi \left(1 - p\right)$$
(Periáñez, 2008)

- χ exchange velocity
- S exchange surface
- **R** sediment radius
- φ correction factor
- *p* sediment porosity

spatially varying obs. data

35.0 mm day⁻¹ (Nyffeler et al., 1984)

- **0.01** (Periáñez & Martínez-Aguirre, 1997)
- **0.6** (Auffret et al., 1974)
- L sediment mixed layer depth
- *H* thickness of the ocean bottom layer

We developed a sediment model based on Periáñez (2008).

We developed a sediment model based on Periáñez (2008).

Heterogeneous spatial distribution

Heterogeneous spatial distribution

- Heterogeneous spatial distribution
- Temporal persistency

Heterogeneous spatial distribution

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)

- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓Simulated ¹³⁷Cs activities in the bottom waters
- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
- ✓Spatially varying obs. data of sediment grain size (R)

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓Simulated ¹³⁷Cs activities in the bottom waters
- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
- ✓Spatially varying obs. data of sediment grain size (R)

Temporal persistency

- Almost irreversible adsorption process (Otosaka & Kobayashi, 2012)

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓Simulated ¹³⁷Cs activities in the bottom waters
- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
- ✓Spatially varying obs. data of sediment grain size (R)

Temporal persistency

- Almost irreversible adsorption process (Otosaka & Kobayashi, 2012) \checkmark A slow desorption rate constant (k_2)

Heterogeneous spatial distribution

- Recording history of passing through highly contaminated water (Otosaka & Kobayashi, 2012; Kusakabe et al., 2013)
 ✓Simulated ¹³⁷Cs activities in the bottom waters
- Spatial distribution of sediment grain size (Otosaka & Kobayashi; Kusakabe et al., 2013)
- ✓Spatially varying obs. data of sediment grain size (R)

Temporal persistency

- Almost irreversible adsorption process (Otosaka & Kobayashi, 2012) \checkmark A slow desorption rate constant (k_2)

- simulate temporal variation of ¹³⁷Cs in each monitoring station
- validate model outputs

- simulate temporal variation of ¹³⁷Cs in each monitoring station
- validate model outputs

EXT case

- simulate spatiotemporal variation of ¹³⁷Cs allover the domain (extrapolating the obs. data)
- estimate the total amount of ¹³⁷Cs in sediment off the Fukushima coast

composite of the results separated by the station depth

R CRIEPI

composite of the results separated by the station depth

composite of the results separated by the station depth

CRIEPI

composite of the results separated by the station depth

comparison of the simulated ¹³⁷Cs activities in sediments with obs. data

if we use a homogeneous (mean) sediment radius (R)

Bq m⁻³

Bq kg⁻¹

1.0e+00, 8e+00, 3.2e+00, 5.6e+00, 1.0e+01, 8e+01, 3.2e+01, 5.6e+01, 0e+02, 8e+02, 3.2e+02, 5.6e+02, 0e+03, 2e+03, 2e+03, 5.6e+03, 0e+04, 1.0e+04, 1

EXT case

Estimate of the total inventory of ¹³⁷Cs off the Fukushima coast (Kusakabe et al., 2013)

Estimate of the total inventory of ¹³⁷Cs off the Fukushima coast

Estimate of the total inventory of ¹³⁷Cs off the Fukushima coast

Estimate of the total inventory of ¹³⁷Cs off the Fukushima coast

The total inventory of 137 Cs in sediments off the Fukushima coast is O(0.1) PBq.

Summary

- Highly contaminated waters (> 10² Bq m⁻³) can be explained by the direct release of ¹³⁷Cs to the ocean.
- The activity level of ¹³⁷Cs in seawater decreased significantly by one-year after the accident, but that in sediment persisted.
- Spatial pattern of ¹³⁷Cs in sediment is likely characterized by history of ¹³⁷Cs in the overlying bottom water and by spatial distribution of sediment grain size.
- The total amount of ¹³⁷Cs in sediment is estimated to be O(0.1) PBq.

STN case (1-D simulation)

Bottom water

