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The MPAS-Ocean Vertical Coordinate 

Z-Level: Fixed coordinate.  POP, MOM, MIT-GCM, NEMO 

Z-star: Layers expand with SSH.  MOM, recently POP, others 

sigma: terrain-following.  ROMS, NEMO 

isopycnal: MyCOM, GOLD 

hybrid isopycnal: HyCOM 

partial bottom cells (in addition to others) 

z-tilde: frequency-filtered coordinate (in addition to others) 
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The MPAS-Ocean Vertical Coordinate 

n  Z-Level  

n  Z-star 

n  sigma: only tested in idealized cases so far 

n  isopycnal: idealized only, no zero thickness layers 

n  hybrid isopycnal: under development 

n  partial bottom cells 

n  z-tilde: frequency-filtered coordinate 



Arbitrary Lagrangian-Eulerian (ALE) Vertical Coordinate 

Thickness equation: 

wtop is transport through interface 

z-level             , except layer 1 
∂hk
∂t

= 0

isopycnal (for adiabatic, 
idealized studies) w=0 

x, y 
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z-star Layer thickness changes 
in proportion to SSH 
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Test Problems (Ilicak et al. 2012) 

n  Lock exchange 

n  Baroclinic eddies 

n  Overflow 

n  Internal gravity wave 

n  Sub Ice-Shelf 

x, km

de
pt

h,
 m

 

 

10 20 30 40 50 60

5

10

15

20 5

10

15

20

25

30

x, km

y,
 k

m

50 100 150

50

100

150

200

250

300

350

400

450

500

50 100 150 200

0

50

100

150

200

250

300

350

400

450

500  

 

x, km

de
pt

h,
 m

11

12

13

14

15

16

17

18

19



Lock Exchange Test Case 
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n  Zero tracer diffusion 
n  Vary horizontal viscosity 
n  Linear equation of state 
n  Simplest test of mixing 

MPAS-O 

Ilicak et al. (2012) 

n  Ilicak et al. (2012) compares ROMS, 
MITgcm, MOM, GOLD 

n  Theoretical wave propagation speed 
is 

uf =1 2 gH δρ ρ
0( )



Resting Potential Energy (RPE): a measure of mixing 
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n  Definition (Ilicak et al. 2012):   

n         is the sorted density state, with heaviest on the bottom.                            

RPE = g ρ*zdV∫∫∫
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Example 1: No mixing 

Example 2: some mixing 

Example 3: fully mixed 
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Resting Potential Energy (RPE): Lock Exchange 
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n  RPE increases with time as fluid is mixed 
n  RPE depends on horizontal viscosity as follows: 

low horizontal viscosity 
high Reyolds number 
high RPE, more mixing 

high horizontal viscosity 
low Reyolds number 
low RPE, less mixing 

data from 
Ilicak et al. (2012) 
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Baroclinic Eddies Test Case 
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n  Idealized ACC: periodic channel, f-plane 

n  Compare to POP z-level and POP z-star 

less 
mixing 



Overflow Test Case 

n  Zero tracer diffusion 

n  vary hor. viscosity 

n  Test z-level, z-star, 
partial bottom cells, 
and sigma coordinate 
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Internal Wave Test Case 
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Frequency-filtered thickness: z-tilde (Leclair & Madec 2011) 
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n  Motivation:  We would like internal gravity waves to not cause mixing. 

n  Here lines show grid cells, for z-star vertical grid: 

n  What if we allow layer thickness to oscillate with internal waves? 

n  This can be done with a low-pass filter on the divergence 



Frequency-filtered thickness: z-tilde (Leclair & Madec 2011) 
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n  A low-pass filter on the baroclinic divergence: 

Dk = D+ !Dk = D+Dk
lf +Dk

hfDivergence: 

hor. divergence 

low frequency baroclinic div. 

high frequency baroclinic div. 
barotropic 

baroclinic 

τ Dlf

Low-pass filter: 

n          is the filter time scale, typically five days. 

n  It controls the time scales included in the low frequency divergence.  

∂Dk

lf

∂t
= −

2π

τ Dlf
Dk

lf − ′Dk
 

τ Dlf

short time, high frequency 
oscillations change layer thickness 

long time, low frequency oscillations 
do not change layer thickness 

Dk =∇⋅ hkuk( )



Frequency-filtered thickness: z-tilde (Leclair & Madec 2011) 
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n  A low-pass filter on the baroclinic divergence: 

∂Dk

lf

∂t
= −

2π

τ Dlf
Dk

lf − ′Dk
 

Low-pass filter: 

∂hk
hf

∂t
= −Dk

hf
−
2π

τ hhf
hk
hf
+∇⋅ κhhf∇hk

hf( )

∂hk

∂t
=
∂hk

ext

∂t
+
∂hk

hf

∂t

High-frequency 
thickness equation: 

Revised thickness 
equation: 

Two new 
prognostic 
equations 

z-star 
part 

z-tilde 
part 

forcing restoring diffusion 

Dk = D+ !Dk = D+Dk
lf +Dk

hfDivergence: 

low frequency baroclinic div. 

high frequency baroclinic div. 
barotropic 

baroclinic 

hor. divergence 



Frequency-filtered thickness: Internal Wave Test Case 
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n  It works! 

n  Here lines show grid cells, for z-tilde vertical grid: 



Frequency-filtered thickness: Internal Wave Test Case 
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n  Similar results for global simulations 

τ Dlf

short time, high frequency 
oscillations change layer thickness 

long time, low frequency oscillations 
do not change layer thickness 

grid Reynolds number 

stronger z-tilde 

less vertical 
transport 

less mixing 

grid Reynolds number 

vertical transport through layer interface 
dRPE(t)

dt
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MPAS-Ocean: Ice Shelf Above Ocean Surface 

n  For coupled ocean-ice shelf modeling, we need to depress the ocean surface 
with the weight of the ice shelf. 

image from Joughin ea. Science, 2012 

image from Jenkins ea. Science, 2010 

Observations:  
Pine Island Glacier 
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MPAS-Ocean: Ice Shelf Above Ocean Surface 

n  For coupled ocean-ice shelf modeling, we need to depress the ocean surface 
with the weight of the ice shelf. 

140 km 30 km 

A: 100 m 
(varies) 

500 m 

500 m 
(varies) 

linear 
stratification 
in salinity, 
constant 
temperature 

Stop=34.5 

Sbot=34.7 

B: 15 km (varies) 

y 

z 

MPAS-Ocean model  
22 layers, 50 m each  

30 km 

ice shelf, imposed by surface pressure 

Test 2: Driven Cavity 

surface wind stress of 0.1 N/m2 

cavity, S=34.3 
throughout 

fixed slope 

varying slope 

250 m 
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MPAS-Ocean: Ice Shelf Above Ocean Surface 

n  For coupled ocean-ice shelf 
modeling, we need to depress 
the ocean surface with the 
weight of the ice shelf. 

n  Ocean layers were 
compressed to 5 cm thickness 
with no negative effects. 

n  Sheer cliff face may be used 
at ice shelf edge. 

n  Tests used linear EOS.  For 
nonlinear EOS, must account 
for sigma-coordinate 
correction. 

Initial salinity 

salinity, day 20 
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The MPAS-Ocean Vertical Coordinate 

n  Z-Level  

n  Z-star 

n  sigma: only tested in idealized cases so far 

n  isopycnal: idealized only, no zero thickness layers 

n  hybrid isopycnal: under development 

n  partial bottom cells 

n  z-tilde: frequency-filtered coordinate 


