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2.   What sets the observed pattern 

Southern Ocean SST changes? 
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cooling in recent decades? 
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can change the AMOC’s spatial pattern drastically, and they
can temporarily reduce or increase the amount of deep water
formed, with a strong impact on climate. However, our
focus here is on the AMOC as a large-scale coherent
circulation system and on longer timescales, that is, on
which mechanism provides the ocean with the energy
necessary to sustain a steady state deep overturning circu-
lation.
[8] The terms ‘‘meridional overturning circulation’’ and

‘‘thermohaline circulation’’ (THC) have sometimes been
used almost like synonyms, but they have very different
meanings. ‘‘MOC’’ is merely a descriptive, geographic
term: It is simply a circulation in the meridional-vertical
plane, as depicted by an overturning stream function as in
Figure 3. The term ‘‘MOC’’ thus does not refer to any
particular driving mechanism.
[9] The term ‘‘THC,’’ by contrast, is a definition of flow

by driving mechanism. There are three qualitatively differ-

ent physical mechanisms to drive oceanic flows: (1) direct
momentum transfer by surface winds, (2) acceleration of
water by tidal forces, and (3) thermohaline forcing. This
classification has been found in oceanography textbooks
since the early 20th century [e.g., Defant, 1929; Neumann
and Pierson, 1966]. A simple, archetypal example of the
latter would be the regional thermohaline (or, in this case,
thermal) circulation caused by ‘‘hot spots’’ of geothermal
heating at the ocean bottom near mid-ocean ridges [Joyce
and Speer, 1987; Thompson and Johnson, 1996]. Another
example is the flow driven by strong surface cooling of a
previously warmer body of water, as occurs, for example,
when a polynya opens up in sea ice [Buffoni et al., 2002]. In
these examples, thermohaline fluxes at the ocean boundary
(surface or bottom) cause density changes that drive a flow
by setting up pressure gradients.
[10] A complication arises when considering the large-

scale thermohaline circulation in steady state, as this steady

Figure 2. Idealized meridional section representing a zonally averaged picture of the Atlantic Ocean.
Straight arrows sketch the MOC. The color shading depicts a zonally averaged density profile derived
from observational data [Levitus, 1982]. The thermocline, the region where the temperature gradient is
large, separates the light and warm upper waters from the denser and cooler deep waters. The two main
upwelling mechanisms, wind-driven and mixing-driven, are displayed. Wind-driven upwelling is a
consequence of a northward flow of the surface waters in the Southern Ocean, the Ekman transport, that
is driven by strong westerly winds (see section 4). Since the Ekman transport is divergent, waters upwell
from depth. Mixing along the density gradient, called diapycnal mixing, causes mixing-driven upwelling;
this is partly due to internal waves triggered at the ocean’s boundaries (see section 3). Deepwater
formation (DWF) occurs in the high northern and southern latitudes, creating North Atlantic Deep Water
(NADW) and Antarctic Bottom Water (AABW), respectively. The locations of DWF are tightly linked
with the distribution of surface fluxes of heat and fresh water; since these influence the buoyancy of the
water, they are subsumed as buoyancy fluxes. The freshly formed NADW has to flow over the shallow
sill between Greenland, Iceland, and Scotland. Close to the zone of wind-driven upwelling in the
Southern Ocean is the Deacon cell recirculation, visible in the zonally integrated meridional velocity in
ocean models. Its relevance is discussed in section 4. Note that in the real ocean the ratio of the
meridional extent to the typical depth is about 5000 to 1.
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Ekman upwelling of unmodified water from depth around Antarctica acts as a 
‘thermostat’, delaying anthropogenic warming poleward of the ACC 
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§  Regions of decreasing SST are 
generally gaining heat at the surface 

§  Regions of increasing SST are 
generally losing heat at the surface 

Patterns of air-sea heat fluxes are 
driven by the ocean 
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§  Regions of decreasing SST show 
generally decreasing heat content 

§  Regions of increasing SST show 
generally increasing heat content 

SST patterns are not simply driven 
by local deep ocean heat storage 
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Figure 3.1: a) Depth-averaged 0–700 m temperature trend for 1971–2010 (longitude vs. latitude, colors and grey 
contours in qC per decade). b) Zonally-averaged temperature trends (latitude versus depth, colors and grey contours in 
qC per decade) for 1971–2010, with zonally averaged mean temperature over-plotted (black contours in °C). c) 
Globally-averaged temperature anomaly (time versus depth, colors and grey contours in qC) relative to the 1971–2010 
mean. d) Globally-averaged temperature difference between the ocean surface and 200 m depth (black: annual values, 
red: 5-year running mean). All panels are constructed from an update of the annual analysis of Levitus et al. (2009). 
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§  Regions of decreasing SST show 
generally decreasing heat content 

§  Regions of increasing SST show 
generally increasing heat content 

SST patterns are not simply driven 
by local deep ocean heat storage 



 

§  Ensemble of 16 models from the Coupled Model Intercomparison 
Project phase 5 (CMIP5) 

§  response to an abrupt CO2 quadrupling from pre-industrial (4xCO2) 

§  average over a wide range of atmospheric and oceanic physics, and 
reduce influence of internal variability 

 

 

§  Ocean-only configuration of the MITgcm (Ocean-only) 
§  ocean response to an abrupt surface forcing 

§  isolate the role of surface heat flux changes by removing surface freshwater 
and wind changes 

Modeling evidence for a Southern Ocean thermostat 

Two sets of idealized climate perturbation experiments: 



 

§  Ensemble of 16 models from the Coupled Model Intercomparison 
Project phase 5 (CMIP5) 

§  response to an abrupt CO2 quadrupling from pre-industrial (4xCO2) 

§  average over a wide range of atmospheric and oceanic physics, and 
reduce influence of internal variability 

 

 

§  Ocean-only configuration of the MITgcm (Ocean-only) 
§  controlled surface flux conditions 

§  isolate the role of the ocean in the transient climate response to forcing 

Modeling evidence for a Southern Ocean thermostat 

Two sets of idealized climate perturbation experiments: 
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§  Ocean-only simulation with the MITgcm 
§  global ocean with realistic land geometry 

§  no atmosphere 

 

§  Model run to equilibrium with air-sea fluxes prescribed through bulk 
formulae -- CORE protocol of Griffies et al (2009), with an annually 
repeating cycle 

§  Climate change experiment: 
§  Abrupt, uniform surface forcing of R = 4 Wm-2 everywhere 

§  Uniform radiative feedback of λ = -1 Wm-2K-1 everywhere 

§  No other surface flux changes (wind, fresh water, etc)  

Ocean-only MITgcm simulation 

Any spatial structure in warming 
must arise from ocean circulation 
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§  Introduce a temperature-like passive tracer: 

§  units of temperature 

§  forced and damped at the surface like temperature 

§  does not influence ocean circulation 

What portion of this response is due to changes in ocean circulation? 

wind-driven 
upwelling 
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§  Overall warming pattern is mainly due to passive advection 
of the temperature signal by climatological currents 

§  Detailed structure (banding) is due to changing circulation in 
response to heat uptake 
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Southern Ocean summary 

 

§  Observed cooling around Antarctica extends 
beyond the sea-ice edge, out to the ACC where 
intense warming has occurred 

 

§  Ekman upwelling of unmodified water from 
depth delays surface warming 

§  overall patterns are consistent with passive 
advection of the warming signal by climatological 
currents 

§  detailed structure is due to changes in circulation 

§  suggests millennial adjustment timescale for the SO 

 

§  The observed cooling south of the ACC seems 
likely to be caused by natural variability (possibly 
on top of a very slow warming trend) 

§  this could not have occurred without a Southern 
Ocean thermostat 
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can change the AMOC’s spatial pattern drastically, and they
can temporarily reduce or increase the amount of deep water
formed, with a strong impact on climate. However, our
focus here is on the AMOC as a large-scale coherent
circulation system and on longer timescales, that is, on
which mechanism provides the ocean with the energy
necessary to sustain a steady state deep overturning circu-
lation.
[8] The terms ‘‘meridional overturning circulation’’ and

‘‘thermohaline circulation’’ (THC) have sometimes been
used almost like synonyms, but they have very different
meanings. ‘‘MOC’’ is merely a descriptive, geographic
term: It is simply a circulation in the meridional-vertical
plane, as depicted by an overturning stream function as in
Figure 3. The term ‘‘MOC’’ thus does not refer to any
particular driving mechanism.
[9] The term ‘‘THC,’’ by contrast, is a definition of flow

by driving mechanism. There are three qualitatively differ-

ent physical mechanisms to drive oceanic flows: (1) direct
momentum transfer by surface winds, (2) acceleration of
water by tidal forces, and (3) thermohaline forcing. This
classification has been found in oceanography textbooks
since the early 20th century [e.g., Defant, 1929; Neumann
and Pierson, 1966]. A simple, archetypal example of the
latter would be the regional thermohaline (or, in this case,
thermal) circulation caused by ‘‘hot spots’’ of geothermal
heating at the ocean bottom near mid-ocean ridges [Joyce
and Speer, 1987; Thompson and Johnson, 1996]. Another
example is the flow driven by strong surface cooling of a
previously warmer body of water, as occurs, for example,
when a polynya opens up in sea ice [Buffoni et al., 2002]. In
these examples, thermohaline fluxes at the ocean boundary
(surface or bottom) cause density changes that drive a flow
by setting up pressure gradients.
[10] A complication arises when considering the large-

scale thermohaline circulation in steady state, as this steady

Figure 2. Idealized meridional section representing a zonally averaged picture of the Atlantic Ocean.
Straight arrows sketch the MOC. The color shading depicts a zonally averaged density profile derived
from observational data [Levitus, 1982]. The thermocline, the region where the temperature gradient is
large, separates the light and warm upper waters from the denser and cooler deep waters. The two main
upwelling mechanisms, wind-driven and mixing-driven, are displayed. Wind-driven upwelling is a
consequence of a northward flow of the surface waters in the Southern Ocean, the Ekman transport, that
is driven by strong westerly winds (see section 4). Since the Ekman transport is divergent, waters upwell
from depth. Mixing along the density gradient, called diapycnal mixing, causes mixing-driven upwelling;
this is partly due to internal waves triggered at the ocean’s boundaries (see section 3). Deepwater
formation (DWF) occurs in the high northern and southern latitudes, creating North Atlantic Deep Water
(NADW) and Antarctic Bottom Water (AABW), respectively. The locations of DWF are tightly linked
with the distribution of surface fluxes of heat and fresh water; since these influence the buoyancy of the
water, they are subsumed as buoyancy fluxes. The freshly formed NADW has to flow over the shallow
sill between Greenland, Iceland, and Scotland. Close to the zone of wind-driven upwelling in the
Southern Ocean is the Deacon cell recirculation, visible in the zonally integrated meridional velocity in
ocean models. Its relevance is discussed in section 4. Note that in the real ocean the ratio of the
meridional extent to the typical depth is about 5000 to 1.
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meanings. ‘‘MOC’’ is merely a descriptive, geographic
term: It is simply a circulation in the meridional-vertical
plane, as depicted by an overturning stream function as in
Figure 3. The term ‘‘MOC’’ thus does not refer to any
particular driving mechanism.
[9] The term ‘‘THC,’’ by contrast, is a definition of flow

by driving mechanism. There are three qualitatively differ-
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momentum transfer by surface winds, (2) acceleration of
water by tidal forces, and (3) thermohaline forcing. This
classification has been found in oceanography textbooks
since the early 20th century [e.g., Defant, 1929; Neumann
and Pierson, 1966]. A simple, archetypal example of the
latter would be the regional thermohaline (or, in this case,
thermal) circulation caused by ‘‘hot spots’’ of geothermal
heating at the ocean bottom near mid-ocean ridges [Joyce
and Speer, 1987; Thompson and Johnson, 1996]. Another
example is the flow driven by strong surface cooling of a
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large, separates the light and warm upper waters from the denser and cooler deep waters. The two main
upwelling mechanisms, wind-driven and mixing-driven, are displayed. Wind-driven upwelling is a
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this is partly due to internal waves triggered at the ocean’s boundaries (see section 3). Deepwater
formation (DWF) occurs in the high northern and southern latitudes, creating North Atlantic Deep Water
(NADW) and Antarctic Bottom Water (AABW), respectively. The locations of DWF are tightly linked
with the distribution of surface fluxes of heat and fresh water; since these influence the buoyancy of the
water, they are subsumed as buoyancy fluxes. The freshly formed NADW has to flow over the shallow
sill between Greenland, Iceland, and Scotland. Close to the zone of wind-driven upwelling in the
Southern Ocean is the Deacon cell recirculation, visible in the zonally integrated meridional velocity in
ocean models. Its relevance is discussed in section 4. Note that in the real ocean the ratio of the
meridional extent to the typical depth is about 5000 to 1.

RG2001 Kuhlbrodt et al.: DRIVERS OF THE AMOC

3 of 32

RG2001

wind-driven 
upwelling adapted from 

Kuhlbrodt et al 
(2007) 

D
e

p
th

 

Role of ocean circulation in Arctic warming 



(°C) 

Ocean-only MITgcm vs CMIP5 

0 

4 

-8 

-4 

8 

	  
SST anomaly a century after 4 Wm-2 forcing 

0 

3 

-3 

	  
CMIP5 SST anomaly a century after 4xCO2 

(°C) 
-6 

6 



0 0.5 0.866 1

0

0.05

0.1

D
e

p
th

 (
m

) 
Ocean potential temperature anomaly a century after 4 Wm-2 forcing 

(°C) 

0 

2 

-4 

-2 

4 

0 

0.1 

H
e

a
t 

tr
a

n
sp

o
rt

 
a

n
o

m
a

ly
 (

PW
) 

Latitude 

Latitude 

Northward heat transport anomaly a century after 4 Wm-2 forcing 

0.05 

Ocean-only MITgcm: surface heat uptake and ocean heat storage 

0 

1000 

2000  

 

0 0.5 0.866 1
−2000

−1500

−1000

−500

0

−4

−3

−2

−1

0

1

2

3

4

Eq 30N 60N 

Eq 30N 60N 



0 0.5 0.866 1

0

0.05

0.1

D
e

p
th

 (
m

) 
Ocean potential temperature anomaly a century after 4 Wm-2 forcing 

(°C) 

0 

2 

-4 

-2 

4 

0 

0.1 

H
e

a
t 

tr
a

n
sp

o
rt

 
a

n
o

m
a

ly
 (

PW
) 

Latitude 

Latitude 

Northward heat transport anomaly a century after 4 Wm-2 forcing 

0.05 

0 

1000 

2000  

 

0 0.5 0.866 1
−2000

−1500

−1000

−500

0

−4

−3

−2

−1

0

1

2

3

4

Eq 30N 60N 

Eq 30N 60N 

Ocean-only MITgcm: passive vs active role of ocean heat uptake 

passive tracer 



 

 

0 0.5 0.866 1
−2000

−1500

−1000

−500

0

−4

−3

−2

−1

0

1

2

3

4

D
e

p
th

 (
m

) 
Ocean potential temperature anomaly a century after 4 Wm-2 forcing 

(°C) 

0 

2 

-4 

-2 

4 

Latitude 

Latitude 

Passive temperature-like tracer anomaly a century after 4 Wm-2 forcing 

D
e

p
th

 (
m

) 

0 

1000 

2000 

0 

1000 

2000 

passive tracer 

0 

2 

-4 

-2 

4 

(°C) 

Ocean-only MITgcm: passive vs active role of ocean heat uptake 

 

 

0 0.5 0.866 1
−2000

−1500

−1000

−500

0

−4

−3

−2

−1

0

1

2

3

4

Eq 30N 60N 

Eq 30N 60N 



(°C) 

0 

4 

-8 

-4 

8 

	  
SST anomaly a century after 4 Wm-2 forcing 

0 

4 

-4 

	  
Passive tracer anomaly a century after 
4 Wm-2 forcing 

(°C) 
-8 

8 

Ocean-only MITgcm: passive vs active role of ocean heat uptake 



Bonus slides 



1979-2005 annual-mean surface temperature trends 
	  
§  Observations: GISTEMP 

	  
§  Models: mean of 16 CMIP5 GCMs 
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